
ar
X

iv
:2

50
6.

13
16

1v
1 

 [
cs

.C
R

] 
 1

6 
Ju

n 
20

25

Using LLMs for Security Advisory Investigations:
How Far Are We?

1st Bayu Fedra Abdullah
Informatics Engineering

Universitas Muhammadiyah Surakarta
Surakarta, Indonesia

L200200115@student.ums.ac.id

4th Raula Gaikovina Kula
Graduate School of IST

University of Osaka
Osaka, Japan

raula-k@ist.osaka-u.ac.jp

2nd Yusuf Sulistyo Nugroho
Informatics Engineering

Universitas Muhammadiyah Surakarta
Surakarta, Indonesia

yusuf.nugroho@ums.ac.id

5th Kazumasa Shimari
Information Science

Nara Institute of Science and Technology
Nara, Japan

k.shimari@is.naist.jp

3rd Brittany Reid
Information Science

Nara Institute of Science and Technology
Nara, Japan

brittany.reid@naist.ac.jp

6th Kenichi Matsumoto
Information Science

Nara Institute of Science and Technology
Nara, Japan

matumoto@is.naist.jp

Abstract—Large Language Models (LLMs) are increasingly
used in software security, but their trustworthiness in generating
accurate vulnerability advisories remains uncertain. This study
investigates the ability of ChatGPT to (1) generate plausible
security advisories from CVE-IDs, (2) differentiate real from fake
CVE-IDs, and (3) extract CVE-IDs from advisory descriptions.
Using a curated dataset of 100 real and 100 fake CVE-IDs, we
manually analyzed the credibility and consistency of the model’s
outputs. The results show that ChatGPT generated plausible
security advisories for 96% of given input real CVE-IDs and
97% of given input fake CVE-IDs, demonstrating a limitation in
differentiating between real and fake IDs. Furthermore, when
these generated advisories were reintroduced to ChatGPT to
identify their original CVE-ID, the model produced a fake CVE-
ID in 6% of cases from real advisories. These findings highlight
both the strengths and limitations of ChatGPT in cybersecurity
applications. While the model demonstrates potential for au-
tomating advisory generation, its inability to reliably authenticate
CVE-IDs or maintain consistency upon re-evaluation underscores
the risks associated with its deployment in critical security tasks.
Our study emphasizes the importance of using LLMs with
caution in cybersecurity workflows and suggests the need for
further improvements in their design to improve reliability and
applicability in security advisory generation.

Index Terms—advisory, chatgpt, cve id, security, vulnerability

I. INTRODUCTION

In recent years, software vulnerabilities have become the
main focus for software developers, especially due to the in-
crease in cybercrimes [1]. Developers may attempt to mitigate
vulnerabilities [2], but hackers continue exploiting weaknesses
to attack users and steal sensitive data [3]. To aid the secure
development of software, the Common Vulnerabilities and
Exposures (CVE) system maintains a database1 of publicly
disclosed vulnerabilities in software packages, labeling each
with a unique CVE-ID and providing advisory information.

1https://www.cve.org/

CVEs are a common way of disseminating security informa-
tion within the software community, and thus recognizing and
identifying them is important to the security of software.

With the rise of generative AI, developers increasingly turn
to Large Language Models (LLMs) for assistance in various
domains, such as health [4], education [5], programming [6],
including software security [7]. Despite their growing popu-
larity, concerns remain regarding the accuracy and reliability
of outputs [8]. In cybersecurity, some practitioners use tools
like ChatGPT to retrieve CVE-IDs or generate advisories,
though LLMs’ trustworthiness in this context is uncertain.
While LLMs show promise in vulnerability detection [9]
and automated security bug repair [10], their tendency to
hallucinate information [11] raises risks. Relying on AI-
generated advisories without verification may create false
security assumptions or even delay critical mitigation efforts.
Although LLMs are not designed as database query systems,
our study reflects real-world misuse scenarios where users treat
them as trusted security sources.

This study investigates the capabilities of LLMs in gen-
erating accurate and reliable security advisories, identifying
inconsistencies in vulnerability data, and detecting fake CVE-
IDs. Prior research has examined LLMs in vulnerability de-
tection and code security analysis. However, limited work
has explored their reliability in security advisory generation.
To address this gap, we formulate the following research
questions:

• RQ1: How trustworthy are the LLM-generated security
advisories, given a known CVE-ID as input?

• RQ2: Do LLMs have the capability to detect fake CVE-
IDs?

• RQ3: Can LLMs accurately and consistently produce
CVE-ID from a provided advisory description?

To answer these questions, we constructed a dataset com-

https://www.cve.org/
https://arxiv.org/abs/2506.13161v1


prising 100 real CVE-IDs and their corresponding secu-
rity advisories from the GitHub Security Advisory (GHSA)
database,2 capturing key metadata such as CVE-ID, title,
severity, and affected products. To evaluate the LLM’s ability
to detect fabricated vulnerabilities, we generated an additional
100 fake CVE-IDs using a Python script and verified their
absence in public vulnerability databases. Both real and fake
CVE-IDs were provided to ChatGPT, and the generated advi-
sories were analyzed for accuracy, consistency, and reliability.

The findings highlight both the potential and the risks of
utilizing LLMs for security advisory generation. While LLMs
show impressive generative capabilities, their tendency to pro-
duce misinformation raises concerns about their deployment
in critical cybersecurity tasks. Our study highlights the im-
portance of validating AI-generated security advisories before
adoption and serves as a foundation for future research aimed
at improving LLM reliability in cybersecurity applications.

II. RELATED WORK

A. LLMs for Software Engineering

Since the first release of the LLM, numerous studies have
been conducted on its implementation in software engineering.
Studies reveal that LLMs or generative AI tools like Google
Bard (now called Gemini), ChatGPT, or CoPilot have proven
that they can improve productivity in software engineer-
ing [12], [13]. The use of LLMs has also benefited many
software engineering tasks. For example, LLMs can accelerate
the development cycles and reduce the time spent on repetitive
coding tasks [14], increasing productivity [15], improving
software quality and development efficiency [16], and even
the LLMs can help in identifying the software vulnerability-
related subtle patterns [17].

Despite the advantages of the use of LLMs in software
engineering, it has been unknown how far the LLMs can
distinguish between real or fake vulnerabilities and their
descriptions.

B. Identifying Software Vulnerabilities

As one of the weaknesses in computer security, vulnera-
bilities are often used by an attacker to exploit the system
to perform unauthorized actions [18], [19]. To mitigate this,
developers sometimes notify other programmers by citing a
specific vulnerability identifier in code comments to indicate
that the code may contain vulnerability [20]. Other strategies
were also proposed in several researches, such as the de-
velopment of automatic identification of vulnerable versions
for CVE [21], the implementation of TF-IDF and Doc2Vec
for automatically tracing the related CAPEC-IDs from CVE-
ID [22], and a machine-learning based technique to assign
pertinent CWE identifiers to new CVE entries [23]. These
trigger software developers to make efforts and help them in
addressing security issues consistently.

2https://github.com/advisories

In addition, some prior works were conducted by focusing
on the vulnerability descriptions. For example, a study pro-
posed a novel method to compose CVE descriptions by ex-
tracting some vulnerability aspects from ExploitDB [24]. Their
results indicate that the method can achieve high accuracy
in composing CVE descriptions. Another study augmented
the vulnerability description by scrapping third-party refer-
ences (hyperlinks) [25]. The findings have shown potential
regarding summary fluency, completeness, correctness, and
understanding. Due to the increasing of AI implementations in
the software engineering field, the CVE description can also
be potentially written with the help of AI, such as ChatGPT.
Thus, in this paper, we study to what extent an LLM can
generate the security advisory description.

III. STUDY SETTING

A. Research Questions

To guide our study, we formulated the following three
research questions and their motivations.

RQ1: How trustworthy are the LLM-generated security
advisories, given a known CVE-ID as input?

Motivation: This RQ arises from the increasing use of
LLMs like ChatGPT in cybersecurity. Many developers and
security practitioners rely on these models to generate security
advisories and identify vulnerabilities. However, the accuracy
of AI-generated advisories remains uncertain. Since cyberse-
curity decisions require precise and reliable information, any
incorrect or misleading advisory could result in overlooked
vulnerabilities or a false sense of security.

In addition, LLMs are known to hallucinate [11], gener-
ating plausible but false information. In the case of security
advisories, this could mean fabricated vulnerability details or
incorrect mitigation steps. Since non-expert users may not have
the expertise to validate AI-generated advisories, it is crucial
to assess how trustworthy these outputs are. By investigating
the trustworthiness of LLM-generated security advisories, we
aim to evaluate whether AI models can serve as a reliable
source of cybersecurity information or if their use introduces
risks that could undermine software security efforts.

RQ2: Do LLMs have the capability to detect fake CVE-IDs?
Motivation: While databases like CVE and GHSA provide

authoritative records of known vulnerabilities, developers and
security practitioners may still turn to AI tools like ChatGPT
for quick information retrieval. However, the ability of LLMs
to differentiate real vulnerabilities from fabricated ones re-
mains unclear. If an LLM fails to detect fake CVE-IDs, it could
generate misleading security advisories, leading to confusion
or even security misconfigurations. This is particularly con-
cerning because attackers or misinformed users could exploit
AI-generated misinformation to spread false vulnerabilities or
obscure real threats.

Moreover, LLMs are trained on large amounts of publicly
available text but lack direct access to up-to-date vulnerability
databases. Without real-time verification mechanisms, they

https://github.com/advisories


Manual Classification:

1. Trustworthiness of Advisory
Description

2. Fake CVE Detection Capability
3. Capability of CVE ID Generation

ChatGPT Querying
for Security Advisory

100 Real
CVE IDs

GitHub Security
Advisory (GHSA)

100 Generated
Fake CVE IDs

Prompt Design

Fig. 1. Overview of the research procedures, covering data collection, prompt design, and manual analyses.

TABLE I
DATASET OVERVIEW

Types of CVE ID # CVE IDs
Real CVE-IDs 100
Generated CVE-IDs 100
Total 200

may produce CVE-IDs that sound reasonable but are entirely
fake or fail to recognize invalid ones. By investigating whether
LLMs can effectively detect fake CVE-IDs, this study aims
to assess their reliability as a security resource and highlight
potential weaknesses in AI-driven vulnerability identification.

RQ3: Can LLMs accurately and consistently produce CVE-
ID from a provided advisory description?

Motivation: When analyzing vulnerabilities, correctly as-
sociating an advisory with its corresponding CVE-ID is es-
sential for tracking and mitigating security risks. If LLMs
can accurately generate CVE-IDs from advisory descriptions,
they could serve as useful tools for automating parts of
the vulnerability management process. This would benefit
developers, security teams, and organizations by improving
efficiency in identifying and responding to threats. However,
if LLMs generate incorrect CVE-IDs, they risk spreading
misinformation and creating confusion within the security
community.

This limitation raises concerns about their ability to consis-
tently match advisories with the correct CVE-IDs, especially
when dealing with newly disclosed vulnerabilities. If an LLM
frequently generates incorrect CVE-IDs, this could undermine
trust in the security insights generated by AI. By evaluating
the accuracy of LLMs in generating CVE-IDs, this study aims
to determine their usefulness in cybersecurity workflows and
highlight areas where improvements are necessary to ensure
their reliability as an information source.

B. Data Collection

As illustrated in Fig. 1, the entire process of this study
includes data collection, fake CVE IDs generation, prompt
design, ChatGPT querying, and manual classification.

The dataset used in this study, as presented in Table I, was
built through the following 2 main steps:

cve_id: CVE-2016-3722
title: Incorrect Authorization in Jenkins Core
affected: Maven org.jenkins-ci.main:jenkins-core
severity: MODERATE
cwe_id: CWE-863
published: 2022-05-14
details: Jenkins before 2.3 and LTS before 1.651.2
allow remote authenticated users with multiple
accounts to cause a denial of service (unable to
login) by editing the "full name".

Fig. 2. Example of extracted security advisory from GHSA.

cve-2021-6365
cve-2016-13580
cve-2018-8981
cve-2022-13790
cve-2022-6453

Fig. 3. Example of fake CVE-IDs.

1) Extracting Security Advisory info from GHSA: To build
our dataset, we initially downloaded all GitHub Security
Advisory (GHSA) data. We then randomly selected 100 real
CVE-IDs and their advisory descriptions by specifying the
attributes including CVE-ID, title, affected product, severity,
CWE-ID, published date, and details, as exemplified in Fig. 2.

2) Generating Fake CVE-IDs: To understand how far we
can rely on LLMs in generating security advisories, we
generated 100 random fake CVE-IDs automatically using
Python code by following the format CVE-YYYY-NNNN(N).
To ensure that the generated CVE-IDs were fake, we cross-
checked the identifiers on the NVD Database.3 If the CVE
IDs exist in the database, they were ignored. Otherwise, they
were kept for further analysis of fake security advisories. Some
generated fake CVE-IDs are shown in Fig. 3.

C. Prompt Design

Prompts using CVE-IDs replicate actual developer behavior
observed on platforms like Stack Overflow and Reddit. For
instance, a Reddit discussion4 illustrates how users query
ChatGPT regarding known and even reserved CVE details,

3https://nvd.nist.gov/
4https://www.reddit.com/r/artificial/comments/1345ay8/chatgpt leaks

reserved cve details should we be/

https://www.reddit.com/r/artificial/comments/1345ay8/chatgpt_leaks_reserved_cve_details_should_we_be/
https://www.reddit.com/r/artificial/comments/1345ay8/chatgpt_leaks_reserved_cve_details_should_we_be/


You will provide information about the given CVE ID.
Your output should follow these rules:
- Provide the title of the CVE in the "Title" label
- Mention the affected product explicitly and its version
in the "Affected" label

- Define the severity level in the "Severity" label
- Provide the CWE ID in the "CWE-ID" label
- Give the "Published date" in ’YYYY-MM-DD’ format in the
"Published" label

- Write the description of the given CVE ID in the
"Description" label

- Return label only without other text

Fig. 4. Example of input to LLM, asking for vulnerability advisory descrip-
tions.

TABLE II
THE TRUSTWORTHINESS OF THE LLM-GENERATED ADVISORY

DESCRIPTIONS

Category Descriptions
Reliable If the generated security advisory is consistent and looks

credible.
Unreliable If the generated security advisory exhibits inconsistencies

and seems unreliable.

highlighting its usage in real-world security contexts. Prompts
were entered manually into ChatGPT using a structured tem-
plate, as shown in Fig. 4. In this case, no files or fine-tuning
were used. We also observed that ChatGPT’s responses were
highly sensitive to the phrasing of prompts; for example,
including explicit instructions such as “mention the affected
product explicitly” produced more detailed information, while
omitting such cues often resulted in vague or generic outputs.
These findings emphasize the importance of careful prompt
design, which we plan to explore further in future work.

D. Manual Classification

The manual classification in this study was conducted by
a single evaluator following a structured rubric. For trustwor-
thiness, advisories were labeled as ‘Reliable’ if they appeared
internally consistent and plausible, and ‘Unreliable’ if they
had inconsistencies, such as date mismatches or implausible
information. For similarity, the evaluator used a five-level scale
ranging from ‘Totally Different’ to ‘Similar,’ based on both
lexical overlap and semantic coherence. In detail, we describe
them in each RQ in Section IV.

E. Appendix

To facilitate the reproducibility of this work, we made our
replication package publicly available on https://github.com/
bayufedra/Research-NAIST-SE-2024.

IV. RESULTS AND DISCUSSIONS

In this section, we describe the findings of each research
question and discuss them comprehensively.

A. RQ1: How trustworthy are the LLM-generated security
advisories, given a known CVE-ID as input?

To address this question, we asked ChatGPT to generate
security advisory details according to the given CVE-ID. By
using the designed prompt in Fig. 4, we input both real and

TABLE III
TRUSTWORTHINESS OF CHATGPT IN GENERATING SECURITY ADVISORY

DESCRIPTIONS BASED ON THE GIVEN CVE-IDS

Type of CVE-ID # CVE-IDs
Reliable Unreliable

Real 96% 4%
Fake 97% 3%

TABLE IV
COMPLIANCE CATEGORIES BETWEEN LLM-GENERATED AND ORIGINAL

SECURITY ADVISORY DESCRIPTIONS

Category Descriptions
Totally Different If the generated description is entirely unrelated.
Quite Different If the generated output has some connections but most

of the information is different.
Somewhat Different If the description generated by LLM has significant con-

nections but there are differences in details or structure
Quite Similar If the output is mostly the same, with only minor or

insignificant differences
Similar If the generated description is exactly the same or fully

aligned without any noticeable differences

fake CVE-IDs. All LLM outputs were then manually analyzed
to evaluate the accuracy of the generated descriptions.

As described in Table II, the LLM-generated outputs were
classified into two categories: Reliable and Unreliable. We
labeled the output Reliable if there is a possibility for someone
to believe that the security advisory is real. Otherwise, it was
labeled Unreliable, including inconsistencies. For example,
the published year of the advisory is different from the year
indicated in the CVE-ID code.

The result, as presented in Table III, shows that ChatGPT
mostly generates reliable advisories, accounting for 96% and
97% for real and fake CVE-IDs, respectively. This indicates
that ChatGPT is remarkably good at generating reliable output,
regardless of whether the input is real or not. Thus, it may not
be obvious to developers if the output or input is misleading
since ChatGPT does not detect whether the CVE-IDs are fake.

Since the trustworthiness of security advisories generated
by ChatGPT does not necessarily reflect the accuracy of the
associated CVE-IDs, a deeper analysis was required. In this
case, we only focused on the 100 randomly chosen real CVE-
IDs. Therefore, we examined the similarity between the advi-
sory descriptions of these real CVE-IDs and the descriptions
generated by ChatGPT. In this analysis, we manually classified
the descriptions into five classes based on the similarity, as
described in Table IV.

As can be seen in Fig. 5, it shows that ChatGPT produces

0 20 40 60 80 100

Totally Diff

Quite Diff

Somewhat Diff

95%

3%

2%

Percentage

Fig. 5. Similarity distribution of ChatGPT-generated advisories to the original
ones.

https://github.com/bayufedra/Research-NAIST-SE-2024
https://github.com/bayufedra/Research-NAIST-SE-2024


TABLE V
FAILURE RATE OF CHATGPT TO DETECT FAKE CVE-IDS

Detection Result # Fake CVE-IDs
Detected 0%
Not detected 100%

95% outputs that totally different from the original advisory
descriptions, 3% are quite different, and 2% are somewhat dif-
ferent. Notably, none of the generated advisories are classified
as “Quite Similar” or “Similar,” highlighting the inability of
the model to accurately replicate original advisory content.

These results suggest that although ChatGPT can generate
security advisories, its descriptions are often unreliable and
lack fidelity to the original CVE advisories. This poses a
significant risk, as practitioners relying on LLM-generated ad-
visories may receive misleading or entirely incorrect security
information. The high rate of “Totally Different” advisories
also underscores the model’s tendency to hallucinate content
rather than align with verified vulnerability data. Given these
findings, it is critical for security professionals to verify AI-
generated advisories against trusted sources before relying on
them for decision-making in cybersecurity contexts.

B. RQ2: Do LLMs have the capability to detect fake CVE-
IDs?

In this RQ, we examined the ability of ChatGPT to detect
its own generated fake CVE-IDs. We inputted each fake ID
of the CVE into the model and asked it to detect whether the
IDs were real or fake.

As described in Table V, ChatGPT failed to flag any fake
CVE-IDs as invalid. However, this does not imply complete
model failure but rather reflects a lack of uncertainty indication
in LLM responses. This result demonstrates that ChatGPT can-
not validate CVE-IDs against an authoritative database. Users
who rely on ChatGPT to verify CVE-IDs may unknowingly
accept and propagate fabricated vulnerabilities, which could
have serious implications for cybersecurity decision-making.

The inability of ChatGPT to differentiate real CVE-IDs from
fake ones highlights a fundamental limitation in its knowl-
edge retrieval and fact-checking processes. This limitation
poses a significant risk, for example, bad actors could exploit
the inability of ChatGPT to detect fakes by spreading false
vulnerability reports, potentially causing unnecessary security
issues or misleading developers into believing non-existent
threats are real. These findings emphasize the importance of
integrating external validation mechanisms, before relying on
LLM-generated security advisories.

C. RQ3: Can LLMs accurately and consistently produce CVE-
ID from a provided advisory description?

In this question, we used both 100 real CVE advisories
extracted from GHSA database, 100 generated advisories of
these original real CVE-IDs resulting from RQ1, and 100
generated advisories of fake CVE-IDs. Subsequently, we asked
ChatGPT whether it could identify the CVE-ID code from the
advisory text using the designed prompt, as shown in Fig. 6.

You will show a CVE-ID based on the given Security
Advisory. Your output must follow these rules:
- Give CVE-ID of the Security Advisory in the "CVE-ID"
label.

- Return label only without other text.

Fig. 6. LLM input to ask for CVE-ID from a given advisory.

TABLE VI
SUCCESS RATE OF CHATGPT IN GENERATING CVE-IDS BASED ON THE

REAL ADVISORIES

Type of Correctness # CVE-IDs
True CVE ID 94%
False CVE ID 6%

First, we asked ChatGPT to generate the CVE-ID based
on 100 real advisories. We considered “True” if the generated
CVE-ID was fully correct. Otherwise, we marked it as “False”
even if it partially matched the true CVE-ID (e.g., correct
year but wrong number). While this approach is strict, it
ensures clarity, and future work may adopt graded scoring to
capture partial correctness. As shown in Table VI, ChatGPT
was incapable of generating 6% CVE-IDs.

Next, we asked ChatGPT to identify the CVE-ID based
on the advisories generated from the same set of real CVE-
IDs. This analysis was conducted to assess its knowledge
consistency. We found that, out of 100 advisories, only one
had a consistent answer, as shown in Table VII. This suggests
that while ChatGPT is capable of generating realistic-sounding
security advisories, it struggles to accurately generate unique
and valid CVE-IDs.

To add to our understanding of its ability, we further asked
ChatGPT with the same scenario as in the previous experiment
using the same prompt as designed in Fig. 6. However, in
this case, we utilized the 100 generated security advisories
based on fake CVE-IDs yielded from RQ1 as the input. The
results, as shown in Table VIII, show that 10% of the CVE-
IDs generated by ChatGPT are detected in the database even
though the advisory given is false. This further highlights the
limitation of the model in accurately generating unique and
valid CVE-IDs, even when provided with fabricated input data.

TABLE VII
THE CONSISTENCY OF THE LLM IN GENERATING CVE-IDS FROM ITS

OWN GENERATED SECURITY ADVISORY

Consistency # CVE-IDs
Consistent CVE ID 1%
Inconsistent CVE ID 99%

TABLE VIII
FREQUENCY OF CVE-ID EXISTENCE DETECTION BASED ON FAKE

ADVISORIES

Authenticity # CVE-IDs
Existing CVE ID 10%
Fabricated CVE ID 90%



V. THREATS TO VALIDITY

One potential threat to validity in this study relates to
the temporal nature of LLM capabilities. Our research was
conducted between April and June 2024, meaning that all
results presented in this paper reflect the state of ChatGPT
during that period. Since LLMs continuously evolve through
updates and improvements, their performance in generating
and verifying security advisories may change over time.

Another threat concerns the prompt design used to query
ChatGPT. The effectiveness of LLM responses can be highly
sensitive to the wording, structure, and specificity of prompts.
Furthermore, our study relied on manual labeling to classify
advisory similarities and assess the correctness of gener-
ated CVE-IDs. This process might be subjective, as human
evaluators may interpret and categorize responses differently.
Although we maintained consistency in our labeling approach,
variations in judgment among different researchers could in-
troduce bias into the results.

VI. CONCLUSION

This study evaluated the capabilities of an LLM, specifically
ChatGPT in generating credible security advisories and identi-
fying CVE-IDs. We investigated the performance of ChatGPT
in identifying 100 real and 100 fake CVE-IDs to gain valuable
insights into its limitations in cybersecurity applications.

Our findings reveal the limitations in the ability of ChatGPT
to generate accurate and trustworthy security advisories, detect
fake CVE-IDs, and correctly assign CVE-IDs to advisories.
Although the model can produce realistic-sounding advisories,
it shows that the generated descriptions frequently differ from
the original ones. ChatGPT also fails to detect fake CVE-
IDs, as it consistently identifies them as real. Furthermore, its
ability to generate CVE-IDs from advisory descriptions is in-
consistent, with a higher percentage of incorrect outputs. These
findings suggest that while LLMs can assist in security-related
tasks, they should not be relied upon to create or verify security
advisory without human supervision. Future research should
explore ways to improve the reliability of LLMs in security
contexts, such as integrating external validation mechanisms,
refining prompt engineering strategies, and improving dataset
quality for training security-related models.

REFERENCES

[1] M. C. Sanchez, J. M. C. de Gea, J. L. Fernandez-Aleman, J. Garceran,
and A. Toval, “Software vulnerabilities overview: A descriptive study,”
Tsinghua Science and Technology, vol. 25, no. 2, pp. 270–280, 2019.

[2] H. Nina, J. A. Pow-Sang, and M. Villavicencio, “Systematic mapping
of the literature on secure software development,” IEEE Access, vol. 9,
pp. 36852–36867, 2021.

[3] S. Mishra, M. A. Alowaidi, and S. K. Sharma, “Impact of security
standards and policies on the credibility of e-government,” Journal of
Ambient Intelligence and Humanized Computing, pp. 1–12, 2021.

[4] H. Daungsupawong and V. Wiwanitkit, “An innovative approach for
treating chronic vaginitis based on AI-driven drug repurposing,” Khaz-
anah Informatika: Jurnal Ilmu Komputer dan Informatika, vol. 10, no.
1, pp. 30–35, 2024.

[5] T. Adiguzel, M. H. Kaya, and F. K. Cansu, “Revolutionizing education
with AI: Exploring the transformative potential of ChatGPT.” Contem-
porary Educational Technology, vol. 15, no. 3, 2023.

[6] Y. Liu, T. Le-Cong, R. Widyasari, C. Tantithamthavorn, L. Li, X. B.
D. Le, and D. Lo, “Refining chatgpt-generated code: Characterizing
and mitigating code quality issues,” ACM Transactions on Software
Engineering and Methodology, vol. 33, no. 5, pp. 1–26, 2024.

[7] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From chatgpt
to threatgpt: Impact of generative ai in cybersecurity and privacy,” IEEE
Access, vol. 11, pp. 80218-80245, 2023.

[8] R. Williams, “Why Google’s AI overview gets things wrong,” MIT Tech-
nology Review. [Online]. Available: https://www.technologyreview.com/
2024/05/31/1093019/why-are-googles-ai-overviews-results-so-bad/

[9] D. Noever, “Can large language models find and fix vulnerable soft-
ware?” arXiv preprint arXiv:2308.10345, 2023.

[10] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 2339–2356.

[11] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. Bang, A.
Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1-38, 2023.

[12] P. Brie, N. Burny, A. Sluyters, and J. Vanderdonckt, “Evaluating a large
language model on searching for gui layouts,” Proceedings of the ACM
on Human-Computer Interaction, vol. 7, no. EICS, pp. 1–37, 2023.

[13] C. Ebert and P. Louridas, “Generative AI for software practitioners,”
IEEE Software, vol. 40, no. 4, pp. 30–38, 2023.

[14] F. Khomh, “Harnessing predictive modeling and software analytics
in the age of LLM-Powered software development (invited talk),” in
Proceedings of the 19th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2023, pp. 1–1.

[15] S. I. Ross, F. Martinez, S. Houde, M. Muller, and J. D. Weisz,
“The programmer’s assistant: Conversational interaction with a large
language model for software development,” in Proceedings of the
28th International Conference on Intelligent User Interfaces, 2023, pp.
491–514.

[16] S. Yu, C. Fang, Y. Ling, C. Wu, and Z. Chen, “LLM for test script
generation and migration: Challenges, capabilities, and opportunities,”
in 2023 IEEE 23rd International Conference on Software Quality,
Reliability, and Security (QRS). IEEE, 2023, pp. 206–217.

[17] M. D. Purba, A. Ghosh, B. J. Radford, and B. Chu, “Software
vulnerability detection using large language models,” in 2023 IEEE
34th International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2023, pp. 112–119.

[18] N. Munaiah, A. Rahman, J. Pelletier, L. Williams, and A. Meneely,
“Characterizing attacker behavior in a cybersecurity penetration testing
competition,” in 2019 ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM). IEEE, 2019, pp.
1–6.

[19] F. Piessens and I. Verbauwhede, “Software security: Vulnerabilities and
countermeasures for two attacker models,” in 2016 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
990–999.

[20] Y. S. Nugroho, D. Gunawan, D. A. Puspa Putri, S. Islam, and A.
Alhefdhi, “A study of vulnerability identifiers in code comments:
Source, purpose, and severity,” Journal of Communications Software
and Systems, vol. 18, no. 2, pp. 165–174, 2022.

[21] L. Bao, X. Xia, A. E. Hassan, and X. Yang, “V-SZZ: Automatic
identification of version ranges affected by CVE vulnerabilities,” in Pro-
ceedings of the 44th International Conference on Software Engineering,
2022, pp. 2352–2364.

[22] K. Kanakogi, H. Washizaki, Y. Fukazawa, S. Ogata, T. Okubo, T. Kato,
H. Kanuka, A. Hazeyama, and N. Yoshioka, “Tracing capec attack
patterns from CVE vulnerability information using natural language
processing technique,” in Proceedings of the Annual Hawaii Interna-
tional Conference on System Sciences. Hawaii International Conference
on System Sciences, 2021.

[23] M. Aota, T. Ban, T. Takahashi, and N. Murata, “Multi-label positive and
unlabeled learning and its application to common vulnerabilities and
exposure categorization,” in 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 2021, pp. 988–996.

[24] J. Sun, Z. Xing, H. Guo, D. Ye, X. Li, X. Xu, and L. Zhu, “Gener-
ating informative CVE description from exploitdb posts by extractive
summarization,” arXiv preprint arXiv:2101.01431, 2021.

[25] H. Althebeiti and D. Mohaisen, “Enriching vulnerability reports through
automated and augmented description summarization,” in International
Conference on Information Security Applications. Springer, 2023.


	Introduction
	Related Work
	LLMs for Software Engineering
	Identifying Software Vulnerabilities

	Study Setting
	Research Questions
	Data Collection
	Extracting Security Advisory info from GHSA
	Generating Fake CVE-IDs

	Prompt Design
	Manual Classification
	Appendix

	Results and Discussions
	RQ1: How trustworthy are the LLM-generated security advisories, given a known CVE-ID as input?
	RQ2: Do LLMs have the capability to detect fake CVE-IDs?
	RQ3: Can LLMs accurately and consistently produce CVE-ID from a provided advisory description?

	Threats to Validity
	Conclusion
	References

