
A Preliminary Study on Self-Contained
Libraries in the NPM Ecosystem

Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

Abstract The widespread of libraries within modern software ecosystems creates
complex networks of dependencies. These dependencies are fragile to breakage,
outdated, or redundancy, potentially leading to cascading issues in dependent li-
braries. One mitigation strategy involves reducing dependencies; libraries with zero
dependencies become to self-contained. This paper explores the characteristics of
self-contained libraries within the NPM ecosystem. Analyzing a dataset of 2763
NPM libraries, we found that 39.49% are self-contained. Of these self-contained li-
braries, 40.42% previously had dependencies that were later removed. This analysis
revealed a significant trend of dependency reduction within the NPM ecosystem.
The most frequently removed dependency was babel-runtime. Our investigation in-
dicates that the primary reasons for dependency removal are concerns about the
performance and the size of the dependency. Our findings illuminate the nature of
self-contained libraries and their origins, offering valuable insights to guide software
development practices.

keywords

Libraries, Open Source, Software Engineering

Pongchai Jaisri
Information Science Graduated School, Nara Institute of Science and Technology, Nara, Japan,
e-mail: jaisri.pongchai.js3@is.naist.jp

Brittany Reid
Information Science Graduated School, Nara Institute of Science and Technology, Nara, Japan,
e-mail: brittany.reid@naist.ac.jp

Raula Gaikovina Kula
Information Science Graduated School, Nara Institute of Science and Technology, Nara, Japan,
e-mail: raula-k@is.naist.jp

1

jaisri.pongchai.js3@is.naist.jp
brittany.reid@naist.ac.jp
raula-k@is.naist.jp


2 Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

1 Introduction

In software development, a software library refers to pre-built, reusable code mod-
ules or libraries that developers integrate into their projects to enhance functionality
processes. The term dependency in the context of software libraries refers to the
reliance of the main library on external modules to function correctly. These depen-
dencies are crucial in ensuring the proper execution of the software by providing es-
sential functionality. Nowadays, the widespread of libraries within modern software
ecosystems creates complex networks of dependencies (e.g., NPM for JavaScript,
PyPI for Python, and Maven for Java).

The practice of adding numerous dependencies by library maintainers can lead to
dependency bloat [4]. This presents a challenge, as maintainers may lack clear visi-
bility into which specific parts of the library utilize each dependency. Consequently,
the risk associated with dependency usage may increase. The dependencies intro-
duce several challenges. First, they exhibit fragility; complex inter-dependencies
mean a single broken dependency can have cascading effects [7, 14]. Second, de-
pendencies are outdated or abandonment [15]. Third, redundancy is prevalent. The
lack of strict publishing guidelines within the ecosystem allows developers to create
and distribute libraries with overlapping functionality [1–3]. Finally, dependencies
can potentially lead to cascading issues in dependent libraries.

Software ecosystems present a vast landscape of potential research topics. Di-
rectly related to the focus of this paper are investigations into trivial packages, soft-
ware reuse & dependency changed, and self-contained library.

One mitigation strategy is dependency reduction. Rather than addressing prob-
lems rooted in external dependencies, maintainers may opt to remove problematic
libraries entirely. Maintainers have the flexibility to remove dependencies as needed.
If the process of dependency removal continues until a library has zero dependen-
cies, it becomes a self-contained library.

In this paper, we further classify self-contained libraries into two distinct cate-
gories base on the dependency history:

1. Always Self-Contained Libraries: The libraries that maintained self-contained
status from their initial release to the latest version (e.g., get-stdin).

2. Become Self-Contained Libraries: The libraries that initially possessed depen-
dencies but subsequently removed them (e.g., prettier).

Our idea in this paper is exploring the characteristic of self-contained library
within NPM ecosystem, guideline with 3 research questions.

1. RQ 1: To what extent is the reducing of dependencies a prevalent phenomenon?

Motivation: Answering this research question will quantify the prevalence of
dependency reduction among libraries. This metric will provide insight into
the popularity of self-contained libraries and their potential impact within the
broader software ecosystem.



A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem 3

2. RQ 2: Which types of libraries are most reduced?

Motivation: This research question aims to identify the specific types of depen-
dencies that are most frequently removed. Understanding these trends will shed
light on evolving practices in dependency management and illuminate potential
implications for dependent libraries.

3. RQ 3: What factors are frequently associated with libraries that have reduced?

Motivation: This question extends the findings of RQ 1 and RQ 2., establishes the
prevalence of self-contained libraries, while RQ 2 reveals the dependencies most
frequently removed. By synthesizing this data, we can begin to identify common
characteristics among libraries that shed dependencies, ultimately leading to a
better understanding of the factors influencing this phenomenon.

This study investigates the characteristics of self-contained libraries within the
NPM ecosystem. We analyze a dataset of 2,763 NPM libraries to identify the preva-
lence of libraries that have undergone dependency reduction, transforming them into
self-contained libraries. Notably, our findings reveal that 40.42% of self-contained
libraries had dependencies that were subsequently removed. We further explore the
most frequently removed dependencies (e.g., babel-runtime) and delve into the
motivations behind dependency removal by examining associated Git commits. By
analyzing these reasons, we identify the most prevalent factors driving dependency
reduction. The most prevalent factors are concerns about the performance and the
size of the dependency. This research enhances our understanding of the evolving
relationship between dependency libraries and their dependents within the NPM
ecosystem, shedding light on dependency management trends.

2 Related Work

2.1 Trivial packages

Within the NPM ecosystem, the use of small, often single-function, libraries has
been observed [1, 7]. These so-called ‘trivial packages’ come with several disad-
vantages. Maintaining a large number of small, trivial packages can significantly
increase a developer’s workload. Additionally, these packages can lead to complex
dependency chains that are difficult to manage and resolve (often referred to as ”de-
pendency hell”) [1,2]. The abundance of trivial packages can make it challenging to
find the right one, especially when multiple packages offer similar functionalities.
This overabundance also contributes to redundant packages within the ecosystem.
Finally, projects that incorporate many trivial packages tend to have longer installa-
tion and build times due to the increased number of dependencies.



4 Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

2.2 Software reuse & dependency changes

Software reuse is the process of creating software system from existing software
rather than building them from scratch [8]. Software reuse is a fundamental practice
in software development, offering benefits such as improved quality and reduced
effort. This practice involves a provider who creates reusable software components
and users who integrate these components, or dependencies, into their own software.

Dependency changes are a common occurrence in software development and
can sometimes introduce problems for dependent libraries. Breakage in dependent
libraries can occur due to various reasons [14], including: feature modifications,
incompatible provider versions, changes in object types, undefined objects, incorrect
code semantics, failed provider updates, function renaming, or missing files.

Dependency change issues extend beyond the NPM ecosystem. For example, a
study examining deprecation in Javadoc [9] involved the manual analysis of 374
deprecated methods across four major Java APIs to determine whether deprecation
reasons were documented.

This work examines how self-contained libraries form. Previous research has
focused on removing dependencies [5]. However, increased dependency removal
creates greater potential for libraries to become self-contained.

3 Dataset Preparation

Fig. 1 Overview of library selection

Figure 1 provides a visual overview of the library selection process for the
dataset. We begin by selecting the top 500 libraries with the highest number
of dependents from libraries.io1, sorting them in descending order by dependent
count. We then systematically analyze the dependency tree of each library by us-
ing the Open Source Repository and Dependency Metadata from libraries.io, yield-
ing the dependency trees of 500 libraries. The dataset is available in Zenodo, at
https://doi.org/10.5281/zenodo.10972337 [6]

1 https://libraries.io/

https://doi.org/10.5281/zenodo.10972337
https://libraries.io/


A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem 5

4 Empirical Study

In this section, we outline our approach to analyzing self-contained libraries, with
a focus on understanding the motivations for removing dependencies. Our study is
divided into three parts, each strategically designed to address a specific research
question:

4.1 RQ 1: To what extent is the reducing of dependencies a
prevalent phenomenon?

We investigated the dependency histories of self-contained libraries, utilizing the
registry npmjs API2 to collect historical dependency data which not later than year
2019. We focus exclusively on regular dependencies, excluding both devDependen-
cies and peerDependencies. The devDependencies are necessary only during devel-
opment and not included in production environments. The peerDependencies, while
indicating potential compatibility with other libraries, may not have direct API in-
teractions. To maintain clarity in this investigation, we limit our analysis to regular
dependencies, avoiding the complexities introduced by other dependency types.

4.2 RQ 2: Which types of libraries are most reduced?

We conducted a detailed analysis of what dependencies were removed from the
identified libraries. Utilizing the dependency history data provided by the reg-
istry.npmjs API, we compared dependency lists across versions. Our focus was
specifically on versions where dependencies were reduced.

4.3 RQ 3: What are the reasons for reducing libraries?

Figure 2 provides a visual overview of gathering the Git commits of the libraries.
For each dependent library, we examined its GitHub3 repository to pinpoint the
version where the maintainer reduced the target dependency. We collected relevant
commits within that period. By matching pull requests with corresponding commits,
we analyzed discussions within the pull requests and the associated code changes.
Our goal was to identify the primary motivations driving the maintainer’s decision
to remove the target dependency.

2 https://registry.npmjs.org
3 https://github.com/

https://registry.npmjs.org
https://github.com/


6 Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

Fig. 2 Overview of gathering target commits

Table 1 Statistic of the libraries and dependencies.

Library categories No. libraries (%)

Non Self-contained libraries 1,672 (60.51%)
Self-contained libraries 1,091 (39.49%)

- Become self-contained 441 (15.96%)
- Original self-contained 650 (23.53%)

All 2,763 (100%)

5 Result

5.1 RQ 1: Prevalence

Our analysis of the 500 most depended upon libraries revealed 2,763 unique li-
braries within the dependency chain. Further investigation into these libraries iden-
tified 1,091 as having no dependencies, or self-contained. Of the self-contained li-
braries, 441 achieved self-contained status through dependency removal. Table 1
provides a detailed statistical breakdown of these libraries and their dependencies.

Finding of RQ 1

We found 39.49% of unique libraries are self-contained libraries. More-
over, we found 15.96% of unique libraries became self-contained li-
braries; that is, they reduced dependencies to zero.



A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem 7

5.2 RQ 2: Most Reduced Libraries

From the 441 libraries that become self-contained libraries, we identified 407 de-
pendencies that were removed. The most frequently removed dependencies were
babel-runtime, lodash. root, and lodash.keys. Figure 3 reveals a sig-
nificant trend in dependency reduction, highlighting the most commonly removed
dependencies.

Fig. 3 The most reduced dependencies

Further analysis revealed that many of these reduced dependencies were, in fact,
sub-dependencies (such as lodash. root and lodash.keys) from the bun-
dled library lodash. We identified 87 sub-dependencies within the complete list
of 407 reduced dependencies. After isolating these sub-dependencies, our revised
analysis indicates that the top three most frequently removed dependencies are
babel-runtime, get-stdin, and minimist. Figure 5 displays the most fre-
quently removed package-type dependencies (excluding sub-dependencies) and the
corresponding number of reductions and Figure 4 specifically details the most fre-
quently removed lodash sub-dependencies.

Finding of RQ 2

The most reduced package dependency is babel-runtime while the
most reduced sub-dependency is lodash. root.



8 Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

Fig. 4 The most reduced dependencies only lodash bundled dependency

Table 2 Number of the gathered commits.

Removed dependency No. commits No. dependent libraries

Single dependency 300 27
- babel-runtime 100 6
- get-stdin 100 15
- minimist 100 6

Bundled dependency 100 1
- lodash (7 sub-dependency) 100 1

All 400 28

5.3 RQ 3: Reasons for Reducing

Guided by the findings of RQ 2, we focus exclusively on reduced dependencies that
are not sub-dependencies. Our analysis centers on the top three most frequently re-
moved dependencies: babel-runtime, lodash. root, and lodash.keys,
looking at 27 parent libraries. Consistent with our methodology, we distinguish be-
tween sub-dependencies from bundle dependencies and single dependenc. As in the
Table 2, we examine 300 random commits from 27 dependent libraries where these
three dependencies were reduced (normal dependencies), along with 100 random
commits from 7 sub-dependency where bundled dependency were removed. There-
fore, these are the top three most frequently removed dependencies after we split
sub-dependencies from bundled library. We split 100 commits for each dependency.



A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem 9

Fig. 5 The most reduced dependencies without lodash bundled dependency

Table 3 Categories of classifying reasons for 28 dependent libraries.

Terminology Definition Libraries (%)

Performance of the The dependency is too heavy, the maintainer of 5 (17.86%)
dependency dependents library need to remove this dependency.

Function replacement Replace the dependency’s function with built-ins 3 (10.71%)
function or custom function

Dependency replacement Replace the dependency with another dependency 1 (3.57%)

Minimize the dependency The dependency is too heavy, the maintainer of 4 (14.29%)
dependency prefer to split some features of the
dependency to independent library.

Removing unused Remove unnecessary or unused dependency 1 (3.57%)
dependency

Others The other reasons that cannot classify 14 (50%)

Below are the reason for the removal of dependencies that we found from random
Git commit messages from dependent libraries.

Table 3 presents the terminology, definitions used to classify reasons for reducing
software dependencies and the overall library with commit for each terminology.
This classification criteria was developed through an analysis of commit messages,
discussions within matched pull requests, and the relevant code modifications.



10 Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

Results for the 28 libraries show that dependency removal was motivated by sev-
eral factors: performance of the dependency, affecting 5 libraries (18.52%), func-
tion replacement affecting 3 libraries (11.11%), dependency replacement affecting
1 library (3.7%), minimalist the dependency affecting 4 libraries (14.81%), and re-
moving unused dependencies affecting 1 library (3.7%), the others are 14 libraries
(50%).

babel-runtime
We found the reasons for dependency-related changes from 3 distinct parent

packages: babylon, common-tags, and babel.

1. babylon4: We found that the maintainer removed babel-runtime because
they were using loose mode: a special mode from babel which helps to refac-
tor the source code. ”remove babel-runtime dep/transform-runtime since we are
using loose mode”. We conclude that this reason is a replacement function.

2. common-tags5: we found a few reasons that the maintainer removed babel-
runtime because this dependency is a heavy dependency. ”The issue in the ar-
ticle is with @angular/cli using 3 methods from common-tags, but the outlaying
issue is babel-runtime is a heavy dependency.”. For this reason, we conclude that
this reason is a performance of the dependency. The another reason is the main-
tainer replace the babel-runtime with Typescript which can handle the browser
compatibility. ”We are considering dropping Babel and replacing it with Type-
script, which would inline all the needed stuff. We care about browser compati-
bility, which is what Babel is used for, and Typescript is handling that well (even
as far as ES3).”. We conclude that this reason is a dependency replacement.

3. babel6: We found variety of reasons that the maintainer removed babel-
runtime.

• The first reason is they want to replace function from babel-runtime with
built-ins function from the new version of Node. ”The reason for doing this
in the first place has to do with wanting to use built-ins like Symbol/Promise,
etc which are not native to node 0.10/0.12. Now that we are on ¿= Node 4
we should be able to use the native ones.”. We conclude that this reason is a
function replacement.

• The second reason is babel is a big dependency because deduping never works
and the maintainer encountered with many copies of babel-runtime.
”Babel is always the biggest dependency in my projects because deduping
never works and I end up with a gadzillion copies of babel-runtime.”. We
conclude that this reason is a performance of the dependency.

• The third reason is the maintainer thinking about less dependency and use
native will make babel faster to run and uninstall.”less dependencies, use
native, might be faster to run/install”. We conclude that this reason is a per-
formance of the dependency.

4 https://github.com/babel/babylon/pull/110
5 https://github.com/zspecza/common-tags/pull/148
6 https://github.com/babel/babel/issues/5118

https://github.com/babel/babylon/pull/110
https://github.com/zspecza/common-tags/pull/148
https://github.com/babel/babel/issues/5118


A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem 11

get-stdin
We found the reasons for dependency removal from 5 difference dependent pack-

ages; dateformat, pretty-bytes, indent-string, detect-indent,
and detect-newline.

1. dateformat7: We found that the maintainer removed get-stdin with other li-
braries. They concern about the flattened dependency tree of the dateformat. ”I
love using this, but I just realized that it’s using meow, and I’m guessing that
a good percentage of users like myself probably aren’t using the CLI, but the
dependency tree for it is absurdly massive. Especially considering this would
have zero deps without it. Meow has 48 dependencies in total, this is its flat-
tened dependency tree.”. We conclude that this reason is a performance of the
dependency.

2. pretty-bytes [10], indent-string [13], detect-indent [11], and detect-newline [12]:
We found that these libraries have a same maintainer. The maintainer of these
module split the function in the libraries into normal version and CLI version.
The normal version used to have dependencies but the maintainer separate them
into the CLI version. We conclude that this reason is a minimalist the dependency.

minimist
We found the reasons for dependency removal from 6 difference dependent pack-

ages; flow-parser, envinfo, prettier, indent-string, detect-
indent, and detect-newline.

1. flow-parser8: The maintainer remove function name ”flowparse” and ”flowvali-
date” from the library. Therefore, they removed the dependency which support
those function. We conclude that the reason is a removing unused dependency.

2. envinfo9: The maintainer relocated minimist from regular dependencies to de-
vDependencies, meant for development-only packages that are removed during
the build process. We conclude that the reason is a performance of dependency.

3. prettier10: We found that the maintainer remove minimist because they want
to transform prettier to dependency-free. ”Move all the dependencies to dev
dependencies and –exact. Since we are now bundling all the dependencies, we
can have prettier be dependency-free on npm ¡3”. We conclude that this reason
is a function replacement.

4. indent-string, detect-indent, and detect-newline: The reason is the same reason
with removing get-stdin which is a minimalist the dependency.

lodash
Among removed dependencies classified as sub-dependencies from bundle de-

pendencies, the top three most frequent were lodash. root, lodash.keys,
and lodash.tostring. However, the maintainer did not provide explicit rea-
sons for the removal of these specific sub-dependencies.

7 https://github.com/felixge/node-dateformat/issues/36
8 https://github.com/facebook/flow/pull/3586/files
9 https://github.com/tabrindle/envinfo/pull/29
10 https://github.com/prettier/prettier/pull/1850

https://github.com/felixge/node-dateformat/issues/36
https://github.com/facebook/flow/pull/3586/files
https://github.com/tabrindle/envinfo/pull/29
https://github.com/prettier/prettier/pull/1850


12 Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula

Finding of RQ 3

The primary factor for removing dependency is ’the performance of the
dependency’, affecting more than 18% of the dependent libraries. This
is followed by minimize the dependency (more than 14%) and the func-
tion replacement (more than 11%).

6 Discussion and Future work

In this work, we show that developers may be changing their attitudes on simply
adopting blindly adopting dependencies into their applications. Based on the results
of the study, one potential application is the development of a tool that recommends
dependencies suitable for removal. Informed by the characteristics of frequently re-
moved dependencies identified in this work, such a tool could analyze dependency
lists (e.g., package.json in JavaScript, pyproject.toml in Python, etc.) and provide
insights regarding individual dependencies. A tool of this nature could prove valu-
able to a broad range of users within the development community, extending beyond
the immediate maintainers of self-contained libraries.

7 Acknowledgements

This work is supported by the Japanese Society for the Promotion of Science (JSPS)
KAKENHI Grant Number JP20H05706.

References

1. Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad Shihab. Why
do developers use trivial packages? an empirical case study on npm. In Proceedings of the
2017 11th joint meeting on foundations of software engineering, pages 385–395, 2017.

2. Rabe Abdalkareem, Vinicius Oda, Suhaib Mujahid, and Emad Shihab. On the impact of using
trivial packages: An empirical case study on npm and pypi. Empirical Software Engineering,
25:1168–1204, 2020.

3. Xiaowei Chen, Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Xin Xia. Helping or
not helping? why and how trivial packages impact the npm ecosystem. Empirical Software
Engineering, 26:1–24, 2021.

4. Ching-Chi Chuang, Luı́s Cruz, Robbert van Dalen, Vladimir Mikovski, and Arie van Deursen.
Removing dependencies from large software projects: are you really sure? In 2022 IEEE 22nd
International Working Conference on Source Code Analysis and Manipulation (SCAM), pages
105–115, 2022.

5. Ching-Chi Chuang, Luı́s Cruz, Robbert van Dalen, Vladimir Mikovski, and Arie van Deursen.
Removing dependencies from large software projects: are you really sure? In 2022 IEEE 22nd



A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem 13

International Working Conference on Source Code Analysis and Manipulation (SCAM), pages
105–115, 2022.

6. Pongchai Jaisri. The commit history of the dependent libraries. https://doi.org/10.
5281/zenodo.10972337, 2024.

7. Raula Gaikovina Kula, Ali Ouni, Daniel M German, and Katsuro Inoue. On the impact
of micro-packages: An empirical study of the npm javascript ecosystem. arXiv preprint
arXiv:1709.04638, 2017.

8. Johannes Sametinger. Software engineering with reusable components. Springer Science &
Business Media, 1997.

9. Anand Ashok Sawant, Guangzhe Huang, Gabriel Vilen, Stefan Stojkovski, and Alberto Bac-
chelli. Why are features deprecated? an investigation into the motivation behind deprecation.
In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 13–24. IEEE, 2018.

10. Sindre Sorhus. extract CLI into a separate module. https:
//github.com/sindresorhus/pretty-bytes/commit/
cdf9f2a6c14374dd4a648cf0b0517a714b97c820, 2024. [Online; accessed
9-March-2024].

11. Sindre Sorhus. extract CLI into a separate module. http://aiweb.techfak.
uni-bielefeld.de/content/bworld-robot-control-software/, 2024.
[Online; accessed 9-March-2024].

12. Sindre Sorhus. extract the CLI into a separate module. http://aiweb.techfak.
uni-bielefeld.de/content/bworld-robot-control-software/, 2024.
[Online; accessed 9-March-2024].

13. Sindre Sorhus. move CLI into a separate module. http://aiweb.techfak.
uni-bielefeld.de/content/bworld-robot-control-software/, 2024.
[Online; accessed 9-March-2024].

14. Daniel Venturini, Filipe Roseiro Cogo, Ivanilton Polato, Marco A Gerosa, and Igor Scaliante
Wiese. I depended on you and you broke me: An empirical study of manifesting breaking
changes in client packages. ACM Transactions on Software Engineering and Methodology,
32(4):1–26, 2023.

15. Supatsara Wattanakriengkrai, Dong Wang, Raula Gaikovina Kula, Christoph Treude, Patana-
mon Thongtanunam, Takashi Ishio, and Kenichi Matsumoto. Giving back: Contributions con-
gruent to library dependency changes in a software ecosystem. IEEE Transactions on Software
Engineering, 49(4):2566–2579, 2022.

https://doi.org/10.5281/zenodo.10972337
https://doi.org/10.5281/zenodo.10972337
https://github.com/sindresorhus/pretty-bytes/commit/cdf9f2a6c14374dd4a648cf0b0517a714b97c820
https://github.com/sindresorhus/pretty-bytes/commit/cdf9f2a6c14374dd4a648cf0b0517a714b97c820
https://github.com/sindresorhus/pretty-bytes/commit/cdf9f2a6c14374dd4a648cf0b0517a714b97c820
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/

	A Preliminary Study on Self-Contained Libraries in the NPM Ecosystem
	Pongchai Jaisri, Brittany Reid, Raula Gaikovina Kula
	Introduction
	Related Work
	Trivial packages
	Software reuse & dependency changes

	Dataset Preparation
	Empirical Study
	RQ 1: To what extent is the reducing of dependencies a prevalent phenomenon?
	RQ 2: Which types of libraries are most reduced?
	RQ 3: What are the reasons for reducing libraries?

	Result
	RQ 1: Prevalence
	RQ 2: Most Reduced Libraries
	RQ 3: Reasons for Reducing

	Discussion and Future work
	Acknowledgements
	References



