
Improving Developer Efficiency
through Code Reuse

Brittany Reid

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The University of Adelaide

The School of Computer and Mathematical Sciences

Supervisors: Dr. Christoph Treude and A/Prf Markus
Wagner

November 7, 2023

https://set.adelaide.edu.au/computer-and-mathematical-sciences/

iii

Contents

Abstract xi

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1
1.1 Background . 1
1.2 Research Problem and Hypothesis 3

1.2.1 Motivating Example . 5
1.2.2 Search and Evaluation 10
1.2.3 Integration . 11
1.2.4 Testing . 11

1.3 Justifications for the Research 12
1.4 Overview of Thesis Structure 12
1.5 Related Literature . 14

2 Literature Review 17
2.1 Empirical Studies on Code Reuse 17
2.2 Search . 18

2.2.1 Third-Party Library Selection 18
2.2.2 Code Snippet Search . 19
2.2.3 Code Synthesis . 20

2.3 Integration . 22
2.3.1 Code Executability . 23
2.3.2 Static Analysis . 23
2.3.3 Automatic Code Correction 24
2.3.4 Code Deletion . 25

2.4 Testing . 26
2.5 Conclusion . 27

3 Connecting Developers to Libraries and Code Examples 29
3.1 Introduction . 30
3.2 Illustrative Example . 31

3.2.1 Typical problem solving in Node.js 32
3.2.2 Problem solving in NCQ 34

3.3 Dataset . 36
3.3.1 Package Data . 37
3.3.2 Code Snippet Extraction 37

3.4 Survey . 38

iv

3.4.1 Survey Design . 38
3.4.2 Survey Results . 39

3.5 Overview . 40
3.6 NCQRetrieval . 41

3.6.1 REPL . 41
3.6.2 Editor Mode . 41
3.6.3 Package Search . 42
3.6.4 Code Snippet Search . 43

3.7 NCQRetrieval Evaluation . 43
3.7.1 Experimental Design . 43

Programming Tasks . 43
Baseline . 44
Participants . 45
Assignment . 45
User Session . 45
Questions . 46

3.7.2 Answering RQ1 . 47
Impact on time to complete each task 47
Time to install first and last package 50

3.7.3 Answering RQ2 . 50
Participant perception of features 50
What was the general participant perception of NCQRetrieval? 52

3.8 NCQRetrieval Limitations . 54
3.9 NCQ . 55

3.9.1 Improved Package Search 56
3.9.2 Code Correction . 56
3.9.3 Additional Features . 57

3.10 NCQ Evaluation . 58
3.10.1 Experimental Design . 58

Baseline . 58
Participants . 58
Questions . 59

3.10.2 Answering RQ3 . 59
Impact on time to complete each task 59
Time to install first and last package 61

3.10.3 Answering RQ4 . 61
Participant perceptions of features 62
What was the general participant perception of NCQ? . 63

3.10.4 Answering RQ5 . 65
3.11 Discussion . 66
3.12 Threats to Validity . 68
3.13 Conclusion and Future Work . 69

4 Correcting Code Examples 71
4.1 Introduction . 72
4.2 Motivating Example . 73
4.3 Approach . 75

v

4.3.1 Identifying Errors . 75
4.3.2 Targeted Fixes . 76
4.3.3 TypeScript Codefixes . 77
4.3.4 Line Deletion . 77

4.4 Dataset . 79
4.4.1 NPM Snippets . 79
4.4.2 Stack Overflow Edits . 79

4.5 Evaluation . 80
4.5.1 What errors does TypeScript detect in NPM documenta-

tion? . 81
4.5.2 How does error detection differ between ESLint and Type-

Script? . 82
4.5.3 What is the impact of NCC on the set of NPM snippets? 83
4.5.4 How does NCC compare to NCQ’s code corrections? . . 86
4.5.5 How does NCC compare to manual fixes? 88

4.6 Threats and Limitations . 90
4.7 Conclusion and Future Work . 90

5 Generating Code Examples 93
5.1 Introduction . 94
5.2 Research Questions . 96
5.3 Dataset . 97
5.4 Results . 98

5.4.1 RQ1.1: Number of Snippets Returned 98
5.4.2 RQ1.2: Snippet Diversity 100
5.4.3 RQ2.1: Snippet Length 102
5.4.4 RQ2.2: Comments in Snippets 103
5.4.5 RQ2.3: Snippet API Usage 106
5.4.6 RQ2.4: Snippet Errors 107
5.4.7 RQ2.5: Snippet Relevance 108
5.4.8 RQ3.1 Keyword Queries 110
5.4.9 RQ3.2 Method Signature Queries 113
5.4.10 Threats to Validity . 114

5.5 Conclusion . 115

6 Conclusion and Future Work 117
6.1 Empirical Studies on Code Correction 119
6.2 Empirical Study of GitHub Copilot 119
6.3 AI Assisted Code Correction and Integration of Snippets 120
6.4 Automatically Generated Test Cases 121
6.5 Investigating Industry Perceptions of Open Source Software Li-

braries . 122

Bibliography 123

vii

List of Figures

1.1 Code reuse process. 3
1.2 Example of a developer’s Node.js file prior to reuse. 5
1.3 Example Stack Overflow answer 5
1.4 Developer’s file after copy-and-pasting 6
1.5 Developer’s file after integration 7
1.6 Developer’s file after correction 7
1.7 Developer’s code for testing . 8
1.8 Developer’s testcase . 9
1.9 Developer’s final code . 9
1.10 The code reuse process labelled by paper 12

2.1 Example input provided to copilot 21

3.1 NPM website search results for “csv file”. 32
3.2 README usage example . 32
3.3 Manual adaption example . 33
3.4 NCQ package search results for ‘csv’ 34
3.5 NCQ snippet cycling . 35
3.6 NCQ adaption example . 36
3.7 Node.js developer survey responses 39
3.8 NCQRetrieval feature overview 41
3.9 NCQRetrieval .packages command output 42
3.10 All session timelines . 48
3.11 NCQRetrieval session durations 48
3.12 NCQRetrieval package search time 49
3.13 Usage of NCQRetrieval and NCQBasic’s features 51
3.14 NCQRetrieval feature ranking . 51
3.15 NCQRetrieval usefulness ranking for search 52
3.16 NCQRetrieval and baseline helpfulness rankings 52
3.17 NCQRetrieval confidence in solution rankings 53
3.18 NCQRetrieval TAM responses . 53
3.19 NCQ feature overview . 54
3.20 NCQ session durations . 60
3.21 NCQ package search time . 60
3.22 NCQ most used features . 61
3.23 NCQ feature ranking . 62
3.24 NCQ usefulness ranking for search 63
3.25 NCQ and baseline helpfulness rankings 63
3.26 NCQ confidence in solution rankings 64
3.27 NCQ TAM responses . 64

viii

3.28 Code snippet breakdown for each technique. 66

4.1 Example code snippet from Stack Overflow answer 45582298. . . 74
4.2 Code snippet after NCC’s corrections. 74
4.3 Excerpt of the manually corrected snippet. 74
4.4 The NCC pipeline. 75
4.5 Most common NPM documentation errors, via TypeScript . . . 81
4.6 Two code snippets from the package prompt. 82
4.7 The 10 most common error types via ESLint. 82
4.8 The 10 most common error types after TS codefixes. 84
4.9 The 10 most common error types after deletion and TS codefixes. 85
4.10 Example and proposed fix. 85
4.11 The 10 most common error types after all fixes. 86
4.12 The 10 most common error types via ESLint after NCQ. 87
4.13 The 10 most common errors for Stack Overflow Edits pre-edit. . 88
4.14 The 10 most common errors for Stack Overflow Edits post-edit. 88
4.15 The most common errors for Stack Overflow snippets after NCC. 89

5.1 Python and Java input given to Copilot 98
5.2 Snippets per query, per CCE . 99
5.3 Distribution of NCDs for each CCE and language. 101
5.4 Copilot repetition example . 102
5.5 Example of repeating comments in a Copilot snippet 104
5.6 Most common external libraries 105
5.7 Copilot Java Snippet using the Selenium API. 107
5.8 Snippets per keyword query, per CCE 112
5.9 Keyword query distribution of NCDs for each CCE and language. 113

ix

List of Tables

3.1 Summary of dataset statistics. 37
3.2 Survey Questions (Q) . 39
3.3 Comparison of baselines used in each evaluation. 40
3.4 Fragment of task assignments. 45
3.5 Questions part A, B and C. 46
3.6 Features provided to users as answers (F) for C5. 46
3.7 TAM (Technology Acceptance Model) questions. 47
3.8 Questions asked (B) after task 1, and (C) task 2. 59

4.1 Summary of SOEdits dataset. 80

5.1 Overview of queries. 97
5.2 Overview of the Dataset . 99
5.3 Lines of code per CCE and Language 102
5.4 Comments per CCE and Language 103
5.5 Import statements per CCE and Language 106
5.6 Errors per CCE and Language 108
5.7 Relevance of code snippets to query. 109
5.8 Further breakdown of “Helpful” results. 111
5.9 Overview of the Keyword Query Dataset 112
5.10 Overview of the Method Query Dataset 114

xi

University of Adelaide

Abstract
Improving Developer Efficiency through Code Reuse

by Brittany Reid

Code reuse is an integral part of modern software development, where most
software is built using existing software artefacts. Ranging from the copy-
pasting of code fragments to the use of third-party libraries, developers fre-
quently turn to the internet to find already-made solutions to difficult program-
ming tasks and save development time. However, the large amount of libraries
and code online can make finding the best solution difficult, and reuse is not
necessarily straightforward. Most online code snippets do not run, meaning de-
velopers need to spend time correcting errors, and when example code snippets
are meant to demonstrate API usage, this can present a barrier to using new
libraries. This work studies ways to aid developers in the code reuse process,
in order to improve their efficiency. We look at ways to more easily connect de-
velopers to the wealth of libraries and usage examples online from within their
programming environment with our tool for Node.js, Node Code Query (NCQ).
We then evaluate how well developers perform compared to the conventional
code reuse process and found that developers using our tool solve tasks faster
and have to try fewer libraries. Additionally, we study what problems online
Node.js code snippets have and how to best correct them automatically, to save
developers time in this step of the reuse process. We find that through the
combination of the TypeScript compiler’s error detection and codefixes, and
our line deletion and custom fixes, we can increase the percentage error-free
snippets in our dataset from 26.3% to 74.94%. Finally, we compare the emerg-
ing AI code snippet generation and pair programmer technologies to current
online code snippet reuse practices, particularly looking at how snippets gen-
erated by GitHub’s Copilot extension and those retrieved from Stack Overflow
using Google might differ. We find that for the same set of queries, Copilot
returned more snippets, with fewer errors and that were more relevant. Ulti-
mately, this work provides further evidence of how automating the code reuse
process can improve developer efficiency, and proposes a series of solutions to
that end. Additionally, we provide a comparison between existing and emerging
reuse processes. As the state of code reuse changes, helping developers under-
stand the strengths of weaknesses of these approaches will become increasingly
important.

http://www.adelaide.edu.au

xiii

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other
tertiary institution and, to the best of my knowledge and belief, contains no
material previously published or written by another person, except where due
reference has been made in the text. In addition, I certify that no part of this
work will, in the future, be used in a submission in my name, for any other
degree or diploma in any university or other tertiary institution without the
prior approval of the University of Adelaide and where applicable, any partner
institution responsible for the joint-award of this degree.

I also give permission for the digital version of my thesis to be made available
on the web, via the University’s digital research repository, the Library Search
and also through web search engines, unless permission has been granted by the
University to restrict access for a period of time.

I acknowledge the support I have received for my research through the pro-
vision of an Australian Government Research Training Program Scholarship.

Brittany Reid

SEPTEMBER 2023

xv

Acknowledgements
I would like to express my gratitude to my supervisors, Associate Professor

Markus Wagner and Dr. Christoph Treude, for their support and guidance.
Especially, I would like to thank both for always providing insightful feedback
over the course of my research and thesis writing. I am also thankful to my
co-authors, with whom it has been a wonderful experience to collaborate with.

I would also like to thank my friends and family for their encouragement.
To my two closest friends, thank you for helping make sure that I didn’t become
a complete hermit over the last three and a half years.

Finally, I would like to thank the Australian Government Research Training
Program for funding my studies, by which this research was made possible.

1

Chapter 1

Introduction

1.1 Background

Code reuse is the reuse of existing software artefacts to create new software.
It constitutes a major aspect of modern software development, from copy-and-
pasting small fragments of code (‘code snippets’) to reusing entire suites of
existing classes and functions via software libraries. In 1968, Doug McIlroy pro-
posed an idea of software development based on reusable, pre-existing software
components (McIlroy et al., 1968), saying:

When we undertake to write a compiler, we begin by saying ‘What
table mechanism shall we build?’ Not, ‘What mechanism shall we
use?’ but ‘What mechanism shall we build?’ I claim we have done
enough of this to start taking such things off the shelf.

Now, over 50 years later, with the rise of the internet, large online registries
of open-source software libraries such as NPM1, Maven Central2 and PyPI3,
and social platforms such as Stack Overflow4, this mindset of ‘use’ over ‘build’
has become incredibly common. Over 79% of developers reported that they
reused code from Stack Overflow, a popular programming question and answer
site, in the last month (Baltes and Diehl, 2019). In fact, a significant portion
of modern software development relies upon popular open-source libraries in
each language that solve common problems; for example, software developers
looking to test their code are unlikely to build their own test suite software, but
to look at existing solutions such as JUnit for Java5 and Mocha6 or Chai7 for
Node.js. Popular frameworks like these are likely to be well-tested and actively
maintained, and thus their usage allows development time to be directed else-
where. This practice is ubiquitous in software development; one study analysing
the frequency of code reuse in open-source projects found that 90% of analysed
projects contained some form of code reuse (Heinemann et al., 2011). Reposito-
ries of open-source software libraries continue to grow, with NPM, the package

1https://www.npmjs.com/
2https://search.maven.org/
3https://pypi.org/
4https://stackoverflow.com/
5https://junit.org/junit5/
6https://mochajs.org/
7https://www.chaijs.com/

https://www.npmjs.com/
https://search.maven.org/
https://pypi.org/
https://stackoverflow.com/
https://junit.org/junit5/
https://mochajs.org/
https://www.chaijs.com/

2 Chapter 1. Introduction

manager for Node.js, hosting over 1 Million libraries or ‘packages’, with use by
industry companies such as Microsoft and Meta.

Motivations for reusing code vary; reuse saves development time and avoids
having to ‘reinvent the wheel’, but it can also provide solutions when devel-
opers run into problems. Stack Overflow’s 24 million questions and 35 million
answers, which often include example code, demonstrates the ubiquity of this
use-case (Stack Exchange, 2023). In general, code reuse is useful when develop-
ers may not have the time or knowledge to program something themselves. How-
ever, the process of reusing code itself is not simple; it can be time-consuming
and introduce challenges of its own. Code sourced from online may be mali-
cious, contain software vulnerabilities or bugs, or in some cases simply not run.
The quality of online code also varies; only 8.41% of Java answers on SO con-
taining compilable code (Terragni, Liu, and Cheung, 2016), and similarly, Yang,
Hussain, and Lopes (2016) found that only 20.00% of JavaScript snippets could
be run. This means that when developers copy-and-paste code from online,
they may need to spend significant time making changes before they can run it.
Additionally, online code may violate licence agreements; for example, multiple
studies (Baltes, Kiefer, and Diehl, 2017; An et al., 2017; Ragkhitwetsagul et al.,
2021) found instances where answers on Stack Overflow contained code copied
from existing projects without providing attribution, and that many instances
of reuse from Stack Overflow did not link back either, allowing stolen code to
propagate freely online. This has an additional effect of enabling this code to
become outdated: software updates may fix bugs or make changes to the API
that are not carried over to unattributed code snippets. Without attribution,
when a snippet no longer works, developers cannot easily trace the source to
see these updates themselves either.

The complicated dependency chain of many software libraries also means
that many projects rely on a number of additional libraries both directly, and
indirectly, and developers may not be aware of all of them. On average, each
package on NPM directly depends on 5.9 other packages (Kula et al., 2017).
Crucial dependencies can simply disappear overnight; such as the case of NPM’s
left-pad, a tiny package that added characters at the beginning of a string.
When the developer of left-pad deleted this library, many projects subsequen-
tially broke because they or their dependencies directly or indirectly depended
upon it. In some cases, developers may introduce malicious code into their li-
braries intentionally; in the case of NPM package node-ipc, as a form of protest
against the war in Ukraine, this package was programmed to wipe the host sys-
tem’s data when it detected an IP address from Russia or Belarus (Kula and
Treude, 2022). Instances like these show the amount of trust that is placed in
reusable software artefacts, and how that trust can be exploited.

These risks highlight a real need for developers to take care when reusing
code. However, developers often reuse code in situations where they do not
have complete understanding; they often look to code reuse when they do not
know how to do something, and thus, they may not completely understand the
risks or how to mitigate them. The search space they navigate is also incredibly
large and can make finding the ‘best’ library or code snippet for a specific
purpose difficult and time-consuming. Nevertheless, code reuse has benefits for

1.2. Research Problem and Hypothesis 3

efficiency, while difficult to quantify; for example, a return of investment of
400% has previously been observed (Lim, 1994).

1.2 Research Problem and Hypothesis

Though code reuse in its many forms is a common aspect of software develop-
ment and benefits development greatly, it is not without risks, and processes
involved can be time-consuming. The primary focus of this research thesis is
in how the processes behind code reuse can be made more efficient, in order to
improve developer efficiency when reusing code. This work both investigates
methods for improving efficiency and, to that end, identifies challenges that
developers experience in order to address them.

The typical manual process of code reuse (illustrated in Figure 1.1) is a
three-step process from task to solution of 1) search; 2) integration and 3)
testing. Developers identify a task they need to perform, or possibly a problem
they need to solve. They formulate queries and search online for high quality
code snippets or libraries. Then, they attempt to integrate the code or library
within their existing project. This can mean making changes to code snippets
for the new context, or installing and setting up new libraries. Finally, they
check that the code works and is able to solve their problem. Challenges may
arise at any of these stages, and developers may need to go back and retry;
for example, switching between integration and testing, or evaluating multiple
pieces of code, before they land on a suitable solution.

Task

1) Search

Evaluate

Relevant?No

Yes

2) Integrate

3) Test

Works?No

Yes

Solution

Figure 1.1. Code reuse process.

The purpose of automating code reuse is to make improvements at any of
these steps in the manual code reuse process, in order to improve developer

4 Chapter 1. Introduction

efficiency. Automated code reuse systems may include integration of search
tools within the programming environment to reduce context switching, the
evaluation of large amounts of code to find the best snippet beyond manual
capabilities, automated integration and error correction to reduce developer
work involved and ways to make testing code functionality a smoother process.
Additionally, the emergence of artificial intelligence code generation models such
as OpenAI’s Codex8 threaten to change the landscape of code reuse, just as
social media changed code reuse to a collaborative, online process (Storey et
al., 2010).

Currently, code reuse predominately takes place online in the web browser,
but this switching between the editor and web browser, a form of context switch-
ing, may negatively impact productivity. Code reuse involves multiple switches
like this. First, developers encounter a situation programming they require a
code reuse solution for must leave their programming to begin the search pro-
cess in the browser. They need to formulate a query in natural language that
describes the problem or task that takes place in the code-space. When they
find a code snippet, they must return to the editor to integrate and test. If
they encounter problems, they must return to the web browser and try again.
Existing code reuse tools (Campbell and Treude, 2017; Ponzanelli, Bacchelli,
and Lanza, 2013) integrate search within the editor to reduce context switching.
The theory behind code recommender tools is that the way developers interact
with their environments can be better adapted for this common programming
task.

Because the ultimate goal of code reuse is to find the best snippet for a given
task, automated systems excel at this problem. Where a human developer can
only look at so many reuse candidates before choosing a ‘good enough’ solution
(and research has shown that the majority of web search users do not go beyond
the first page of results (Jansen, Spink, and Saracevic, 2000)), automated sys-
tems are capable of leveraging large datasets to evaluate and find this snippet
quickly. If a perfect snippet doesn’t exist, changes can be made automatically.
This reduces the need for developers to spend time correcting erroneous online
code; particularly, as code reuse tools may be of benefit to beginner developers
who lack the domain knowledge to fix minor errors themselves. As part of eval-
uating code snippets, developers also test the functionality of code; a broader
challenge of code reuse is how to evaluate the functionality of code.

Large language model (LLM) code generation (for example, OpenAI’s Codex)
functions as a form of code reuse as it 1) generates snippets that are then used
similarly (copy-and-pasted, integrated and then tested) and 2) the output is
generated from a corpus of existing code (a sort of reuse through synthesis).
AI Tools such as GitHub’s Copilot9 (using Codex) operate within an IDE and
take existing code context and cursor position as the input, and generate output
for that context; the result is code snippets that may require less integration.
These large language models can also be instructed with natural language to
make changes or fix code. While it remains to be seen how useful these LLMs

8https://openai.com/blog/openai-codex
9https://github.com/features/copilot

https://openai.com/blog/openai-codex
https://github.com/features/copilot

1.2. Research Problem and Hypothesis 5

are compared to current code reuse, and how may they shape future develop-
ment habits, the functionality LLMs bring will make changes to the field of code
reuse in some way.

The following sections provide a motivating example of the problems that
occur during code reuse, through a typical code reuse scenario, then discusses
the individual problems and solutions at each step.

1.2.1 Motivating Example

1 var path = "file.csv";
2 function main(){
3

4 }
5

6 main();

Figure 1.2. Example of a developer’s Node.js file prior to reuse.

This example demonstrates a typical manual code reuse situation, wherein
a developer would like to find a code snippet to solve a problem. Consider a
case where a developer would like to read in a CSV file in Node.js. While this
can be a relatively simple task, the developer is confident a solution already
exists online that allows them to avoid writing their own code to parse CSV
files. Additionally, if they’re to use an existing library, it may be well-tested
and cover more cases than their own code; this would be useful if they need
to read in other files in the future. Their existing code is shown in Figure 1.2:
they define an empty function main and the path of the CSV file. They then
call the function.

Figure 1.3. SO answer for “Parsing a CSV file using NodeJS”

The developer begins by searching online. They use a general search engine,
in this case Google, to search for the query ‘read csv file Node.js’. Developers

6 Chapter 1. Introduction

often use general search engines like this to find code solutions, which then direct
them to more specific websites. Upon searching, Google retrieves a number of
websites. In this case, the developer selects one of the first results: the Stack
Overflow question “Parsing a CSV file using NodeJS”10. They select the first
answer with a code snippet, shown in Figure 1.3.

The developer can see that this answer has a vote count of 94, indicating
that at least 94 people found it useful. The question has 18 other answers, so
information like vote count can help developers make decisions on what answers
to consider, and Stack Overflow additionally sorts answers by these votes. The
Developer selects this answer because it includes a code example they can easily
reuse; they avoid the accepted answer in this case as it recommends an outdated
library and provides no usage example.

1 var path = "file.csv";
2 function main(){
3 var fs = require(’fs ’);
4 var parse = require(’csv -parse ’);
5 var csvData =[];
6 fs.createReadStream(req.file.path)
7 .pipe(parse({ delimiter: ’:’}))
8 .on(’data ’, function(csvrow) {
9 console.log(csvrow);

10 //do something with csvrow
11 csvData.push(csvrow);
12 })
13 .on(’end ’,function () {
14 //do something with csvData
15 console.log(csvData);
16 });
17 }
18

19 main()

Figure 1.4. The developer’s file after they copy-and-paste the
code snippet into their function.

The first step of integrating the code snippet is for the developer to copy and
paste it into their existing file. Figure 1.4 shows what the developer’s file looks
like after they paste the snippet into their existing main function. However, in
this state the code has errors that will prevent running; the developer needs to
make changes to integrate it correctly within their existing code.

In this case, the developer’s IDE, for example Visual Studio Code, highlights
two errors in the code that will prevent running the code. The third-party
library csv-parse is not installed, and the variable req.file.path is undefined.
To make the snippet runnable, the developer first installs the library via the
NPM package manager. However, the Stack Overflow answer provides no real
information about the library; the developer would need to search on their own
to find out how active the library is, who maintains it and what libraries it

10https://stackoverflow.com/questions/23080413/parsing-a-csv-file-using-nod
ejs

https://stackoverflow.com/questions/23080413/parsing-a-csv-file-using-nodejs
https://stackoverflow.com/questions/23080413/parsing-a-csv-file-using-nodejs

1.2. Research Problem and Hypothesis 7

1 + var fs = require(’fs ’);
2 + var parse = require(’csv -parse ’);
3 +
4 var path = "file.csv";
5

6 function main(){
7 - var fs = require(’fs ’);
8 - var parse = require(’csv -parse ’);
9 var csvData =[];

10 - fs.createReadStream(req.file.path)
11 + fs.createReadStream(path)
12 - .pipe(parse({ delimiter: ’:’}))
13 + .pipe(parse({ delimiter: ’,’}))
14 .on(’data ’, function(csvrow) {
15 console.log(csvrow);
16 //do something with csvrow
17 csvData.push(csvrow);
18 })
19 .on(’end ’,function () {
20 //do something with csvData
21 console.log(csvData);
22 });
23 }
24

25 main()

Figure 1.5. The developer’s file after the snippet has been
integrated.

1 var fs = require(’fs ’);
2 - var parse = require(’csv -parse ’);
3 + var {parse} = require(’csv -parse ’);
4

5 var path = "file.csv";
6 function main(){
7 var csvData =[];
8 fs.createReadStream(path)
9 .pipe(parse({ delimiter: ’,’}))

10 .on(’data ’, function(csvrow) {
11 console.log(csvrow);
12 csvData.push(csvrow);
13 })
14 .on(’end ’,function () {
15 console.log(csvData);
16 });
17 }
18

19 main()

Figure 1.6. The developer’s file after correction.

8 Chapter 1. Introduction

depends on. In this case, the developer decides to just use the recommended
library, as the answer is highly voted. Next, they replace the path to the CSV
file with their previously defined path variable. They make additional changes
to the structure of the code, and the delimiter option. Figure 1.5 shows the
integrated example.

However, the file still does not run. The code example has made a mistake;
the csv-parse library does not export a function. To access the ‘parse’ func-
tion, the developer needs to change way the library has been imported in the
require statement. This problem may have arisen because the example has not
been updated in some time, and the library may have changed at some point.
Regardless, the developer debugs the issue by observing that the value of the
exported object has a method parse they need to access, then corrects the
require statement as needed. The corrective changes are shown in Figure 1.6.

With all errors corrected, their file should now run, printing each row of the
CSV file and then the final data in an array structure. However, the developer
would like to test their code, and maintain a test case to ensure it remains
working. They devise a simple test case using the testing framework mocha,
which they might already be using in their project anyway. In order to test
their code, they need to make some changes so that it can easily be given an
input and return an output.

1 var fs = require(’fs ’);
2 var { parse } = require(’csv -parse ’);
3

4 - async function main(){
5 + async function readCSV(file){
6 + return new Promise ((resolve , reject)=>{
7 var csvData =[];
8 fs.createReadStream(file)
9 .pipe(parse({ delimiter: ’,’}))

10 .on(’data ’, function(csvrow) {
11 - console.log(csvrow);
12 csvData.push(csvrow);
13 })
14 .on(’end ’,function () {
15 - console.log(csvData);
16 + resolve(csvData);
17 });
18 + })
19 }

Figure 1.7. Changes to the code in order to enable testing.

Figure 1.7 shows the changes the developer makes to their main function,
now readCSV. First, they change the function to async, and add an argument
for the file path, so it can be used to read more than a single file. Next, they
take the asynchronous stream logic and wrap it in a promise that will complete
when the entire file has been read. This allows the function to be waited for
using the Node.js await keyword, so the final object can be used after the
reading process is complete. They no longer print for each row, and they no

1.2. Research Problem and Hypothesis 9

1 it(" should read a CSV file", async ()=>{
2 var testPath = "test.csv";
3 var testData = "Name ,Job\n" +
4 "Alice ,Developer\n" +
5 "Bob ,Developer\n";
6 fs.writeFileSync(testPath , testData);
7 var data = await readFile(testPath);
8

9 assert.strictEqual(data.length , 3); //has three rows
10 assert.strictEqual(data [0][0] , "Name"); //has column name
11 assert.strictEqual(data [0][1] , "Job"); //has column job
12 assert.strictEqual(data [1][0] , "Alice"); //has first name
13 })

Figure 1.8. The mocha test case for creating and reading a
CSV file.

1 var fs = require(’fs ’);
2 var { parse } = require(’csv -parse ’);
3

4 async function readCSV(file){
5 return new Promise ((resolve , reject)=>{
6 var csvData =[];
7 fs.createReadStream(file)
8 .pipe(parse({ delimiter: ’,’}))
9 .on(’data ’, function(csvrow) {

10 csvData.push(csvrow);
11 })
12 .on(’end ’,function () {
13 resolve(csvData);
14 });
15 })
16 }
17

18 var path = "file.csv";
19 var csvData = await readCSV(path)
20 console.log(csvData)

Figure 1.9. Developers final code.

10 Chapter 1. Introduction

longer print the final object csvData; instead, this object will be returned by
the function when the promise completes.

Figure 1.8 shows the mocha test case that the developer creates to test the
function. This test case creates a test CSV to read, then runs the function.
After running, it performs four checks to ensure the data was correctly read.
First, it checks that the number of rows is consistent with the test data. This
length check will also fail if the function returns undefined. Second and third,
they check the column headings are correct. Fourth, they ensure that the first
value ‘Alice’ is correct. On run, the test case passes. Figure 1.9 shows the
developer’s final code after successful reuse.

1.2.2 Search and Evaluation

As seen in the section above, searching for code is the first step in reusing
code. It also involves an aspect of evaluation; developers have a large amount
of code snippets to select from and make choices before integrating and testing
about which ones make sense to attempt use with. Primarily, this involves
the relevancy of the snippet to their search query and if it may implement the
required functionality, but developers can also evaluate the quality of snippets
before trying them. In the above example, Stack Overflow vote count is used
to help guide snippet and library choice.

Existing research has established that most developers use generic search
engines like Google to find code and libraries (Umarji, Sim, and Lopes, 2008),
as illustrated in Section 1.2.1. Developers formulate a query and retrieve a
series of webpages as results, and the first step of the subsequent evaluation is
to determine which one they will visit, discarding results that aren’t relevant.
If they are presented with more options, such as multiple answers on a Stack
Overflow question, they also need to evaluate these as well. When finding a
code example, developers need to read the code to determine if it’s worth trying.
Similarly, research has investigated the many features of third-party libraries
that developers look at when choosing a library to use, including documentation,
maintenance and popularity.

The primary issue of code search is that the search space is incredibly large:
the entire internet. This means that it is impossible for a human to evaluate
every option manually. Developers must also formulate a natural language query
that may impact what results they see. In general, developers are selecting the
first suitable result.

The aim of automating code search is to direct developers to high quality
code as fast as possible. Automated code search can pull large amounts of code
from many sources, evaluate this code automatically and present the best code
snippet to a developer. Alternative methods of searching may also be useful; de-
velopers take problems in code and convert them into natural language, in order
to find solutions in code. Search relies on matching queries to the documenta-
tion surrounding code snippets and not the code itself. Automated search may
reduce this gap. Additionally, large language model-based tools like GitHub’s
Copilot generate snippets not just from natural language queries, but based on

1.2. Research Problem and Hypothesis 11

the surrounding code, which might enable them to return higher quality and
more relevant snippets.

1.2.3 Integration

Once developers have found a candidate piece of code for reuse, they need to
integrate it within their existing project. This process may be time-consuming,
and in some cases, unsuccessful, meaning developer may have to return to the
search step.

Integrating third-party libraries involves installing the library and ensuring
compatibility with existing libraries. Developers then begin using the library
in their code; in many cases, they take examples from documentation to get
them started. Many online code snippets, from library documentation and sites
like Stack Overflow, do not run without changes. This means that developers
must spend time fixing bugs, but also adapting the code snippets for their own
purposes. In Section 1.2.1, we see that the developer needs to make changes to
the example for the type of CSV files they will be reading in. Some changes are
structural, like how the developer moved the require statements to the start of
the file in Figure 1.6. Others involve replacing undefined or placeholder values
with their own, such as the CSV file path in the example. The changes needed
for code snippets are often context-dependent, so even code snippets that are
otherwise correct may not work in certain contexts.

Automating this integration step aims to reduce the work developers need
to do to get code snippets working in new contexts.

1.2.4 Testing

Once developers have code that can be run, they need to ensure it performs the
required functionality they need from it. This involves the testing stage. The
testing process can range from simply running the code to ensure it works, to
writing test cases such as in the motivating example given. Developers must
formulate test input and expected output. In the motivating example, the
developer’s input is a basic comma separated CSV, and their expected output
is an array of three rows and two columns. Testing is the final stage of code
reuse, as a snippet that passes all tests has been successfully reused.

In Section 1.2.1, we also observe how a developer changes their code to be
more easily testable. When developers are writing code, they need to think
about how the code will be used. In this case, the developer knew they might
want to read in other CSV files as part of this project, so they devise their test
case to test for this, and their code to handle this.

Automating the stage of testing aims to help developers determine the
runnability and quality of code, which are often related concepts. Testing is
a difficult aspect of programming in general, especially ensuring that all neces-
sary cases are being tested for. In the motivating example, the developer does
not test for edge cases, such as if there may be whitespace or commas in the
fields of their CSV file. Despite the difficulty of developing test cases, testing
reveals much about code that syntactic and static analysis may not.

12 Chapter 1. Introduction

1.3 Justifications for the Research

This research aims to automate the code reuse process, in order to improve
developer efficiency, as well as the quality of code being reused. Code reuse is a
common part of software development, but is time-consuming and can be aug-
mented by automated techniques. Existing approaches fail to automate entire
workflows. By automating the code reuse process, developers can spend less
time reusing code and spend more time programming new features. Automated
techniques can also integrate measures of code quality, to prevent vulnerabili-
ties and bad practice. Developers are often reusing code when they experience
problems or don’t know how to do something, intuitively they are more likely
to make mistakes in this situation.

1.4 Overview of Thesis Structure

Task

Evaluate

Relevant?No

Yes

1) Search

Online Generated

2) Integrate

3) Test

Works?No

Yes

Solution

Legend
Chapter 3
Chapter 4
Chapter 5

Figure 1.10. Modified Figure 1.1 showing the aspects of code
reuse that each paper targets.

This section gives an overview of the thesis, which has been categorised into
6 chapters, as follows. First, this chapter introduces the problem and provides
background. Next, Chapter 2 details the state of the existing literature in
the area of code reuse. The subsequent chapters each detail a research paper
that has been published during my candidature, for which I have contributed a
significant amount of work and am the first author:

1.4. Overview of Thesis Structure 13

3. Connecting Developers to Libraries and Code Examples

4. Correcting Code Examples

5. Generating Code Examples

Finally, Chapter 6 summarizes the contributions of this thesis and discusses
potential future work in the area of code reuse. The following sections detail
each section and give a brief summary. Additionally, for each paper presented in
this thesis, we contextualize its contribution in relation to the problem described
in Section 1.1; in particular, which aspects of the code reuse process it focuses
on automating. Figure 1.10, modified from Figure 1.1 highlights which parts of
the code reuse process each paper addresses.

Chapter 2: Literature Review

Chapter 2 provides an overview of the topic of code reuse, through a literature
review. We identify a series of topics related to code reuse: empirical studies
on how developers reuse code, research into improving code snippet search, how
developers select third-party libraries, improving library search, code synthesis
as an alternative to search, the executability of online code and code correction.
The existing state of literature is discussed, including gaps in the current work
and where this research thesis fits in.

Chapter 3: Connecting Developers to Libraries and Code
Examples

Brittany Reid, Marcelo d’Amorim, Markus Wagner, and Christoph Treude
(2023b). “NCQ: Code Reuse Support for Node.js Developers”. In: IEEE
Transactions on Software Engineering 49.5, pp. 3205–3225. doi: 10.1109
/TSE.2023.3248113

Chapter 3 addresses the challenge of finding libraries and example code. As
seen in Figure 1.10, this paper deals with both the search and integration steps
of code reuse. The presented tool, Node Code Query (NCQ), helps connect
developers to Node.js code snippets and libraries from the NPM registry within
their editing environment. NCQ reduces the need for developers to context
switch between editor and web browser, and connects developers to packages
and snippets more quickly. Additionally, it corrects and sorts snippets by errors
to aid developers with finding high quality snippets, thus reducing time spent
correcting errors.

Code available on Github: https://github.com/Brittany-Reid/node_c
ode_query

Chapter 4: Correcting Code Examples

https://doi.org/10.1109/TSE.2023.3248113
https://doi.org/10.1109/TSE.2023.3248113
https://github.com/Brittany-Reid/node_code_query
https://github.com/Brittany-Reid/node_code_query

14 Chapter 1. Introduction

Brittany Reid, Christoph Treude, and Markus Wagner (2023). “Using the
TypeScript compiler to fix erroneous Node.js snippets”. To appear in: 23rd
IEEE International Working Conference on Source Code Analysis and Ma-
nipulation

Chapter 4 addresses the challenge of correcting Node.js code snippets. As
seen in Figure 1.10, this paper deals with both the integration and test aspects
of code reuse. Using the TypeScript compiler, Node Code Correction (NCC)
can detect and correct errors in Node.js code to aid developers when integrating
incomplete code fragments. This work does not directly deal with testing, but it
does show that analysing and manipulating code with the TypeScript compiler
is viable in Node.js. Being able to generate Abstract Syntax Trees (ASTs) and
determine type information is valuable for the ability to automate testing.

Code available on Github: https://github.com/Brittany-Reid/node_c
ode_correction

Chapter 5: Generating Code Examples

Brittany Reid, Earl Barr, Markus Wagner, and Christoph Treude (2023a).
Copy-Paste vs. Code Generation: Contrasting Stack Overflow and GitHub
Copilot. Being revised for submission to IEEE Transactions on Software
Engineering

With the rise of large language model code generation, developers may no
longer need to look online for code snippets, but generate their own for a given
context. Chapter 5 looks at the differences between current code synthesis via
GitHub copilot (a LLM code generation embedded within the IDE), and code
reuse via Stack Overflow and Google. As seen in Figure 1.10, this paper deals
with the search aspect of code reuse; generated codes fill a similar purpose
and ‘reuse’ in a less direct sense, where a model is trained on existing code to
generate new snippets. However, developers still need to integrate and test this
code. If generated code provides benefits over online code reuse, developers may
look to it instead of online sources when they need snippets. In doing so, they
may reduce the need for integration; in this work, we observed that Copilot
snippets had fewer errors.

1.5 Related Literature

In addition to the above-mentioned papers, I have contributed to the following
papers during the duration of candidature that are not related to the research
topic of this thesis directly, or cannot be included:

8. Bodin Chinthanet, Brittany Reid, Christoph Treude, Markus Wagner,
Raula Gaikovina Kula, Takashi Ishio, Kenichi Matsumoto. “What makes
a good Node.js package? Investigating Users, Contributors, and Runnabil-
ity.” arXiv preprint arXiv:2106.12239. 2021.

https://github.com/Brittany-Reid/node_code_correction
https://github.com/Brittany-Reid/node_code_correction

1.5. Related Literature 15

9. Brittany Reid, Markus Wagner, Marcelo d’Amorim, and Christoph
Treude. “Software Engineering User Study Recruitment on Prolific: An
Experience Report.” 1st International Workshop on Recruiting Partici-
pants for Empirical Software Engineering (RoPES). 2022.

Additionally, this thesis cites the following work I have contributed to prior
to my candidature:

10. Brittany Reid, Christoph Treude, and Markus Wagner (2020). “Opti-
mising the Fit of Stack Overflow Code Snippets into Existing Code”. In:
GECCO, 1945–1953

Code available on GitHub: https://github.com/Brittany-Reid/nlp2
testablecode

https://github.com/Brittany-Reid/nlp2testablecode
https://github.com/Brittany-Reid/nlp2testablecode

17

Chapter 2

Literature Review

Because code reuse is a complicated and multistep process, research into au-
tomating code reuse focuses on many different areas. We look at studies on how
developers currently reuse code, in order to understand the impact of reuse,
what challenges they have and how the process can be improved. We are also
concerned with the landscape of code and libraries that developers interact with
online; that is, what types of snippets and libraries exist and how useable are
they? Additionally, we look at code synthesis as an alternative for code reuse.

This literature review, adapted from the related work sections of the included
publications, covers the following broad topics: the impact of code reuse in
software development (Section 2.1), how to connect developers to code snippets
and libraries (Section 2.2), how to help developers integrate code snippets into
their existing projects (Section 2.3) and how to help developers test reused code
(Section 2.4).

2.1 Empirical Studies on Code Reuse

Many studies have established the advantages and disadvantages of code reuse
as a practice among software developers (Lim, 1994; Baltes and Diehl, 2019;
Basili, Briand, and Melo, 1996; Mockus, 2007; Mohagheghi et al., 2004; Sojer
and Henkel, 2010; Heinemann et al., 2011).

Lim (Lim, 1994) observed that code reuse improved code quality, increased
productivity and reduced development time within two experiments at Hewlett-
Packard (HP) focused on reusing already developed programming artefacts at
the company. It was found that reuse contributed to accumulative bug fixes,
leading to better quality code. Additionally, Lim identifies that, through reuse,
expertise can be funnelled to creating new artefacts, that less experienced de-
velopers can then reuse. There is also an identified cost to code reuse, in that
artefacts must be maintained. Though this work pertains to code reuse within
an organization, the effect of accumulative bug fixes can also be seen in the
collaborative nature of open source software online, and social platforms like
Stack Overflow. Reusers of libraries may contribute back to the software, im-
proving its quality, and in the case of Stack Overflow, users can edit answers
and provide feedback via comments. Basili et al. found similar productivity
gains and defect reduction from reuse in a study of students at the University
of Maryland (Basili, Briand, and Melo, 1996).

18 Chapter 2. Literature Review

Baltes and Diehl (Baltes and Diehl, 2019) surveyed 122 active Stack Over-
flow and GitHub users to find that 79% had “copied or adapted a code snippet
from Stack Overflow” in the last month, and that half of respondents did so
with no reference back to the Stack Overflow answer. Sojer and Henkel (Sojer
and Henkel, 2010) surveyed 686 open source developers on their reuse practices,
finding that experienced developers adopt reuse practices more often than non-
experienced developers. They also observed that 30% of open source software
projects included components from different projects. Mockus looked at code
reuse at the file level in 38.7 thousand open source projects and found that
approximately half of all files were used in at least one other project (Mockus,
2007). Another study (Heinemann et al., 2011) looked at 20 popular Java open
source projects on SourceForge1 and found that 90% contained code reuse in
some form.

Our work on NCQ (Chapter 3) builds on the observations made in these
previous studies: that there is a vast amount of code examples on the web
today, that developers are already trying to use. We provide a platform for
code reuse in Node.js where developers can experiment with different examples
and libraries.

2.2 Search

Much work has focused on how to better connect developers to suitable code
snippets and libraries, and what factors developers look at when selecting li-
braries to reuse. This section covers library selection, code search, and code
synthesis as an alternative for code search.

2.2.1 Third-Party Library Selection

Developers looking to use a library in their projects often have a wealth of
options to select from, with over 1 million packages hosted on the Node Pack-
age Manager (NPM) alone. For a specific functionality, there may be multi-
ple options and forks of those options, and selecting the best package can be
difficult. Research on what features developers look at when evaluating pack-
ages has identified factors such as documentation, performance, test coverage,
security, maintenance, updates and the size of community as important to de-
velopers (Larios Vargas et al., 2020). However, much of the third-party library
landscape consists of open source libraries, and there is a gap in the literature
in how industry perceives and interacts with these libraries.

Some work has proposed tools to connect developers to libraries. El-Hajj
and Nadi proposed LibComp (El-Hajj and Nadi, 2020), an IntelliJ plugin that
assists the developer in selecting alternative libraries based on quality metrics
associated with the libraries. LibComp does not perform code search, and it
requires humans to provide the association of libraries to its knowledge base.
Though existing search websites such as NPM’s own site, and various websites
for the Java Maven repository, often incorporate aspects of package quality,

1https://sourceforge.net/

https://sourceforge.net/

2.2. Search 19

popularity and maintenance into their search, our survey on Node.js developers
for NCQ (Chapter 3) identified that many developers use general purpose search
engines to find libraries. We aim to connect developers to high quality, relevant
snippets by incorporating quality factors into our search. These measures may
help connect developers to suitable packages faster.

2.2.2 Code Snippet Search

Code search has been extensively investigated (Campbell and Treude, 2017;
Reid, Treude, and Wagner, 2020; Ponzanelli et al., 2014; Zhang et al., 2016;
Brandt et al., 2010; Ponzanelli, Bacchelli, and Lanza, 2013; Gu, Zhang, and
Kim, 2018; Xu, Vasilescu, and Neubig, 2022). Much of this work focuses on tools
to facilitate finding snippets from within an IDE, such as NLP2Code (Campbell
and Treude, 2017), Prompter (Ponzanelli et al., 2014), Blueprint (Brandt et al.,
2010) and Seahawk (Ponzanelli, Bacchelli, and Lanza, 2013), in order to reduce
context switching between the editor and browser. Additionally, this work can
focus on different ways to formulate queries: as natural language or code itself,
as in the case of AI assisted search approaches.

Brandt et al. (Brandt et al., 2010) proposed Blueprint, an in-editor tool to
look for example code on the web. Experiments with Blueprint found that de-
velopers wrote higher quality code and search was significantly faster compared
to regular web search. Similarly, Seahawk (Ponzanelli, Bacchelli, and Lanza,
2013) finds Stack Overflow code snippets in the editor, using the existing code
context to automatically formulate search queries. Prompter (Ponzanelli et al.,
2014) automatically notifies developers when it finds snippets on Stack Overflow
that are similar to parts of the code under development. Campbell and Treude
proposed NLP2Code (Campbell and Treude, 2017), an approach where develop-
ers use natural language queries to find code snippets. NLP2Code is integrated
in the development environment to reduce context-switching, provides task sug-
gestions and works entirely in the editor, with no additional views or windows.
Reid et al. (Reid, Treude, and Wagner, 2020) proposed NLP2TestableCode, an
improvement over NLP2Code that checks whether code snippets contain errors
and attempts corrections before recommending them to the developer. Results
indicate the ability to find compilable code snippets in 82.9% of cases, and
“testable” code snippets (able to be converted into a function with input/out-
put for testing) in 42.9% of cases. Our work, NCQ (Chapter 3), implements a
similar code correction functionality, however, our code correction is limited by
the lack of comprehensive error reporting in Node.js. We extend this work on
error correction with NCC (Chapter 4),

There has been some work trying to improve code search via AI. When
searching for code, developers often use natural language queries from which
existing search systems extract keywords from, but there is a disconnect be-
tween code and natural language which makes connecting queries to code dif-
ficult. Gu et al. (Gu, Zhang, and Kim, 2018) proposed DeepCS, an approach
that uses deep neural networks for code search. DeepCS uses a neural network
model, dubbed CODEnn, embedding code snippets and natural language de-
scriptions into a high-dimensional vector space. The intuition is that CODEnn

20 Chapter 2. Literature Review

incorporates semantic information to the search in contrast to typical informa-
tion retrieval approaches, which only use text similarity for search. Preliminary
results showed that DeepCS outperforms alternative code search techniques.
Xu et al. (Xu, Vasilescu, and Neubig, 2022) proposed NL2Code, an in-editor
tool that combines code retrieval and code generation. Their tree-based seman-
tic parsing model was trained on pairs of natural language and code mined from
Stack Overflow and API documentation, and evaluation with developers found
that perceptions of the tool were positive.

In summary, code search has been gaining traction in academia as researchers
realise its ability to improve development productivity, specifically in cases in-
volving the reuse of existing functionality over the creation of new functionality.
However, automated code search tools still do not automate all steps of the code
reuse process, including search, integration and testing. In this sense, the work
presented in this thesis aims to do just that.

2.2.3 Code Synthesis

Generated code, for example from large language models (LLMs) such as Ope-
nAI’s Codex, fills a similar purpose as code reuse from online. There has been
much work on code synthesis, the quality of outputted code, and more recently
how developers might use these systems. Just as the social media revolution
of code reuse (Storey et al., 2010) changed how developers reused code, from
directly searching through source code for solutions to collaborative websites
where other people have already found or written their own solutions, AI may
change this once more. For example, Bird et al. (Bird et al., 2022) predicted
that AI-powered tools will increasingly support developers, and that developer
roles will evolve to focus more on assessing AI-generated suggestions. Where
before a real human developer answers a Q&A question on Stack Overflow using
their own knowledge base or code they find online, a LLM generates a snippet
for a prompt from a database of training data, and does so on demand. In
this way, LLM code generation functions as a type of code reuse because these
models are trained on an existing corpus of code, then use this data to generate
new snippets; e.g. they indirectly reuse code.

Typically, developers interface with these systems using a natural language
query, and are given output in the form of one or more code snippets, that
they then use and integrate into their own code. In this sense, the result is not
fundamentally different from code snippets found online via web search. In the
case of GitHub’s Copilot, which embeds Codex within the editor as a plug-in
for VSCode, snippets are generated using the existing code context and the
cursor position; natural language queries can be embedded within the code as
comments preceding the section to be generated. An example of this can be seen
in Figure 2.1. It is this ability to generate custom snippets based on context,
that could see developers needing to spend less time integrating snippets into
their existing code.

Because copilot takes the existing code context as part of its input, it the-
oretically generates snippets that should fit within an existing project already.
It follows then that these snippets should require no manual work to integrate.

2.2. Search 21

1 import datetime
2

3 def parse_expenses(expenses_string):
4 """ Parse the list of expenses and return the
5 list of triples (date , value , currency).
6 Ignore lines starting with #.
7 Parse the date using datetime.
8 Example expenses_string:
9 2016 -01 -02 -34.01 USD

10 2016 -01 -03 2.59 DKK
11 2016 -01 -03 -2.72 EUR
12 """

Figure 2.1. Example input provided to copilot. The input is
code with a natural language query embedded as a comment.

However, the reality of LLM generated code, for the moment, does not make
this so. Existing work has established that generated code may contain errors
and security issues, and LLMs have been observed to ‘hallucinate’ (Ji et al.,
2023; Alkaissi and McFarlane, 2023); that is, to make up nonsense responses.
The underlying systems behind AI mean that output can follow patterns that
‘look’ correct, but are actually incorrect on closer inspection. This pattern of
behaviour has been called ‘hallucinations’. More commonly, outside of pro-
gramming contexts, such as the ChatGPT2 tool, this manifests as confidently
incorrect responses to a query, that would only be identified as incorrect by
someone with domain knowledge. For programming, this presents an issue for
novice developers who may not be able to identify if an LLM outputs harmful,
malicious or vulnerable code.

Existing work has identified issues with the security of snippets outputted
by Copilot (Pearce et al., 2022); approximately 40% of the generated programs
were found to be vulnerable to high-risk cybersecurity weaknesses. However,
Asare et al. (Asare, Nagappan, and Asokan, 2022) compared Copilot code to
human code and found that it was better than humans at not introducing
vulnerabilities; Copilot replicated the original vulnerable code about 33% of
the time.

Some work has already looked at the performance of AI systems like Copilot.
Sbania et al. (Sobania, Briesch, and Rothlauf, 2022) found similar performance
between GitHub Copilot and genetic programming on program synthesis bench-
marks, but genetic programming is less mature for practical use. Nguyen and
Nadi (Nguyen and Nadi, 2022) assessed Copilot’s code correctness and under-
standability using LeetCode questions and found that Java suggestions had the
highest correctness, while JavaScript had the lowest. Dakhel et al. (Dakhel
et al., 2022) studied Copilot’s capabilities in fundamental algorithmic problems
and human comparisons, concluding that Copilot can provide preliminary solu-
tions but has limitations in advanced tasks. Yetistiren et al. (Yetistiren, Ozsoy,

2https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

22 Chapter 2. Literature Review

and Tuzun, 2022) systematically evaluated Copilot and reported a 91.5% suc-
cess rate for generating valid code with varying correctness. Wong et al. (Wong,
Kothig, and Lam, 2022) investigated Copilot-generated code quality using for-
mal verification with Dafny and suggested that Copilot should not be solely
responsible for programming. Erhabor (Erhabor, 2022) found that using Copi-
lot can lead to code with significantly slower running times.

Other studies have explored the usability and potential impact of GitHub
Copilot and other AI-powered programming assistants. Puryear and Spring (Puryear
and Sprint, 2022) evaluated Copilot’s impact on novice programmers, finding
that it generated mostly unique code with human-graded scores ranging up to
95%. Peng et al. (Peng et al., 2023) found that using GitHub Copilot increased
developers’ task completion speed by more than 50%. On the other hand,
Vaithilingam et al. (Vaithilingam, Zhang, and Glassman, 2022) conducted a user
study and found that Copilot did not directly improve task completion time or
success rate. Imai (Imai, 2022) compared Copilot to human pair programming
and discovered that Copilot increased productivity but produced lower-quality
code. Ziegler et al. (Ziegler et al., 2022) assessed Copilot’s impact on productiv-
ity, finding that developers’ perception of increased productivity depended on
the acceptance rate of suggestions. Zhang et al. (Zhang et al., 2023) analyzed
Copilot usage on Stack Overflow and GitHub Discussions and discovered that
it was mostly used with JavaScript, Python, and Node.js, providing benefits
and limitations. Jaworski and Piotrkowski (Jaworski and Piotrkowski, 2023)
surveyed developers, revealing divided opinions and security concerns about
Copilot. Additionally, the readability and robustness of generated code is an
issue. Al Madi (Al Madi, 2022) accessed code readability and found that de-
velopers should be cautious of complacency and automation bias when working
with model-generated code. Mastropaolo et al. (Mastropaolo et al., 2023) found
that modifying natural language descriptions can result in different code recom-
mendations in almost half of all cases, raising questions about the robustness
of deep learning-based code generators.

While online code reuse must also contend with malicious, buggy or vulner-
able code, and bad actors, LLM models generate code with no context. There is
no external information that can be verified, such as who the author of a snippet
or library is, or how commonly used the snippet is. Sites like Stack Overflow
involve collaborative aspects such as voting, enabling higher-quality snippets to
rise above lower-quality or outdated ones. In a way, the lack of collaborative
‘rating’ for solutions may be a negative. Currently, SO bans AI answers from
its website (Makyen, 2023). What is currently lacking in this area of research,
is a comparison between existing reuse and generated code. In Chapter 5, this
is what we aim to do, looking at the output of both Copilot and Stack Pilot.

2.3 Integration

There has been some work on aiding developers in integrating code snippets
from online into their projects. Primarily, this focuses on helping developers
resolve errors that arise from copy-paste reuse. However, in order to fix errors
in reused code, we require methods to automatically identify these errors. Of

2.3. Integration 23

main concern is the observation that most online code snippets do not run; this
means that related areas, such as automated program repair and bug detection
techniques that rely on executable code, cannot be applied. Much of the area
of code fragments thus deals with static analysis (which does not require exe-
cutability), and how to make snippets into some runnable form. This section
looks at the state of code snippets (what problems they might have and how to
identify them) and methods for automated code correction.

2.3.1 Code Executability

Existing work has established that the majority of online code snippets do not
run (Chinthanet et al., 2021; Yang, Hussain, and Lopes, 2016; Mirhosseini and
Parnin, 2020; Horton and Parnin, 2018), which can present a challenge to de-
velopers attempting to reuse these code snippets. In one study of online coding
tutorials (Mirhosseini and Parnin, 2020), it was found that only 26% of the
included snippets were able executable, which may constitute a problem espe-
cially when developers turn to such tutorials for topics they are inexperienced
with. An evaluation of GitHub Gists found similar results: 25% of code snip-
pets were runnable by default (Horton and Parnin, 2018). For Stack Overflow
in particular, it has been observed that only 8.41% of Java answers on Stack
Overflow contained compilable code (Terragni, Liu, and Cheung, 2016). In a
study of code examples from NPM documentation, only 15.20% of ran success-
fully (Chinthanet et al., 2021).

Some systems have been proposed to help developers write and maintain ex-
ecutable code examples. Mirhosseini and Parnin (Mirhosseini and Parnin, 2020)
proposed a system to annotate documents and encouraged the use of notebooks
(e.g., Jupyter Notebooks (Jupyter 2020)) to improve executability of tutorials.
Similarly, Melo et al. (Melo, Wiese, and d’Amorim, 2019) proposed Frisk, a
system that enables QA forum users to describe problems (e.g., configuration
problems) and share these problems with the community (e.g., Stack Overflow
users), who could help fix the problems. Frisk uses Docker to enable developers
consistently reproduce problems and collaboratively propose fixes.

However, none of this work tackles methods to automatically improve exe-
cutability of code that already exists online. Instead, they rely on some manual
effort in creating correct snippets to begin with. The primary issue of code
snippets is that they are often created for example purposes and thus lack as-
pects that may be obvious from context. For example, a code snippet in a Stack
Overflow answer may omit code that has already been provided in the question.

2.3.2 Static Analysis

Previous work has looked at error detection in JavaScript and Node.js, using
parsers (Yang, Hussain, and Lopes, 2016), linters (Campos et al., 2019; Reid
et al., 2023b) or runtime errors (Chinthanet et al., 2021; Yang, Hussain, and
Lopes, 2016). The benefit of static analysis is that it can report multiple errors,
is typically fast, and that code can be evaluated without running it; this is
especially useful when most online snippets do not run (Chinthanet et al., 2021;

24 Chapter 2. Literature Review

Yang, Hussain, and Lopes, 2016). Additionally, it is undesirable for a code
reuse tool to run arbitrary code from online, when snippets can be malicious
or contain vulnerabilities. For these reasons, static analysis can be useful for
providing information about large sets of code, or for on-demand use in an
automated code reuse pipeline. For example, tools such as NCQ (Reid et al.,
2023b) and NLP2TestableCode (Reid, Treude, and Wagner, 2020) use errors to
inform fixes and recommend the highest quality snippets first. However, most
of the issues that linters like ESLint report are stylistic; Campos et al. ran the
standard ESLint configuration on JavaScript code snippets mined from Stack
Overflow and found that no snippets were free of rule violations, but that 163
rules could be characterised as ‘stylistic issues’ or ‘best practice’ (Campos et al.,
2019).

Similar work in Java has made use of static analysis tools like PMD (PMD,
2023) and compilers to detect and correct errors in code snippets (Reid, Treude,
and Wagner, 2020; Terragni, Liu, and Cheung, 2016; Licorish and Wagner,
2022a; Licorish and Wagner, 2022b). The process of converting code into an-
other lower-level language is more complicated than just generating an AST
(compilers parse code as only one step of the compilation process), meaning
that they report errors that parsing alone does not. Because Java code must
be compiled before it can be run, the ability to compile a snippet is a useful
measure of quality in a reuse context – code that does not compile is thus not
runnable. Many compilers, such as the Eclipse Java compiler and the Type-
Script compiler, are designed to report multiple errors and are used to report
error information within an IDE. To the best of our knowledge, no existing work
attempts to use the TypeScript compiler to evaluate and fix errors in Node.js
code. Based on these observations, we devise NCC to fill this gap.

2.3.3 Automatic Code Correction

Prior work has attempted to improve the quality of code snippets sourced from
online, which often have errors due to the nature of example code. Code snippets
are often not intended to run, but to demonstrate functionality; for example,
previous work has found that only 15.2% of code snippets in NPM documen-
tation are able to run (Chinthanet et al., 2021). However, previous work like
NLP2TestableCode (Reid, Treude, and Wagner, 2020) or CSnippEx (Terragni,
Liu, and Cheung, 2016) has focused on Java code snippets, and employed the
use of the Eclipse Compiler to detect and fix errors. CSnippEx implements
Eclipse’s built-in Quick Fixes, while NLP2TestableCode employs a set of heuris-
tic fixes and a line deletion algorithm to correct snippets. However, dynamic
languages like JavaScript and Python do not have compilers, and work in these
languages has previously made use of linters and parsers to detect errors (Cam-
pos et al., 2019; Yang, Hussain, and Lopes, 2016). To our knowledge, no work
has attempted to combine this error detection with code correction as we do in
NCQ.

Much work on fixing code has focused on software bugs in runnable pro-
grams, evaluated via test cases. In contrast to this, code correction in the con-
text of code reuse deals with fragmented, often unrunnable code, where these

2.3. Integration 25

approaches cannot be applied. To solve the problem of correcting unrunnable
snippets, existing tools rely on static analysis to identify errors and inform
heuristic fixes. CSnippEx (Terragni, Liu, and Cheung, 2016), for Java, employs
an existing suite of fixes from Eclipse, while NCQ (Reid et al., 2023b) does
the same in Node.js using ESLint’s fixes. NLP2TestableCode (Reid, Treude,
and Wagner, 2020) in Java uses a set of custom heuristic fixes, and is able
to insert missing import statements and variable definitions. Jigsaw (Cottrell,
Walker, and Denzinger, 2008), another Java tool, allows developers to supply a
method to integrate and a destination class or function, then extracts structural
information to make integration changes. Where it cannot automatically fix in-
tegration errors, it inserts comments and highlights parts of code for developer
attention.

Besides NCQ, other work in JavaScript and Node.js looks at repairing soft-
ware bugs in runnable code. Vejovis (Ocariza, Pattabiraman, and Mesbah,
2014) automatically suggests repairs for DOM-based JavaScript faults to de-
velopers, but these repairs require runnable code and are not applicable for
Node.js. The use of AI models to fix code is also of interest: Lajkó et al. (La-
jkó, Csuvik, and Vidács, 2022) look at the use of the GPT-2 model to fix
software bugs; after training the model to fix JavaScript bugs, they found that
it did so correctly in most cases. AI tools that generate code snippets, such as
GitHub Copilot (GitHub, 2023), a plug-in for VSCode that uses OpenAI’s more
advanced GPT-3-based Codex (OpenAI, Zaremba, and Brockman, 2021), are
able to generate snippets that match the surrounding context, eliminating the
need to integrate snippets. However, there is some concern about the quality
of the output of these systems, with regard to bugs, vulnerabilities, and cor-
rectness for given queries (Dakhel et al., 2022; Nguyen and Nadi, 2022). NCC
aims to build on existing work on correcting errors in Node.js code snippets, by
combining TypeScript’s existing fix suite, with custom heuristic fixes, as well as
utilising comments where developer intervention is still needed. Additionally,
we hypothesise that better error detection using a compiler will enable more
accurate error correction, as we test out in Chapter 4.

2.3.4 Code Deletion

Code deletion, for example, at the granularity of lines or statements, is a unary
operator that is easy to implement. It also does not require any code analysis
or synthesis and can be a component of a more complex operation, such as
replacing a line with another. Therefore, code deletion is typically included
in studies related to code improvement (Le Goues, Weimer, and Forrest, 2012;
Harrand et al., 2019; Licorish and Wagner, 2022b; Licorish and Wagner, 2022a;
Petke et al., 2019; Ginelli et al., 2022). Often, these studies report errors that
are fixed (relative to a given test suite) by removing the offending code.

For the problem of correcting unrunnable code where test cases cannot be
used, line deletion, in combination with error reporting, has previously been
used as a solution. For example, NLP2TestableCode (Reid, Treude, and Wag-
ner, 2020), which is an Eclipse plug-in that assists in reuse of Stack Overflow

26 Chapter 2. Literature Review

code, employs a line deletion algorithm as the last step in a suite of fixes, us-
ing the Eclipse compiler to provide error information. The NCQ code reuse
tool (Reid et al., 2023b) implements a similar functionality for Node.js, us-
ing ESLint to evaluate errors. Similarly, Licorish and Wagner (Licorish and
Wagner, 2022a) combined static analysis with the Gin genetic improvement
framework (Brownlee et al., 2019) (which includes deletion operations, among
others) to improve Java code snippets on Stack Overflow. In contrast to these
works, we investigated the possibility of using the TypeScript compiler to in-
form line deletions as just one of the potential ways it could be used for code
corrections.

2.4 Testing

Developing good test cases is difficult, and thus there has been much work
on ways to automate software testing and help developers generate test cases
for projects (Hanford, 1970; Bird and Munoz, 1983; Duran and Ntafos, 1984;
Pacheco et al., 2007; Tonella, 2004; Fraser and Arcuri, 2011). However, in the
code reuse context, testing is more concerned with ensuring the runnability
and functionality of candidate code. Primarily, developers are concerned with
if a snippet or library runs, and then if so, it accomplishes some task they
need. For example, testing as part of the reuse process may simply involve
executing the code and checking if the output is correct manually. In this
sense, automating code reuse looks at how to better integrate testing into the
reuse process. Additionally, existing software testing techniques, such as testing
frameworks, runners, and generators can still be helpful.

In Section 1.2.1 we describe a manual reuse situation where a developer first
executes their code, then writes a function and mocha test case. To automate
this process, we need to be able to make candidate code into a ‘testable’ form,
and to automatically generate test cases, with as little developer input as pos-
sible. The intended aim of automated testing in a reuse context is to integrate
runnability as a measure of the quality of code candidates.

There has been much work on ways to automatically generate test cases.
The area of randomized test case generation is a type of black box testing using
random inputs (Hanford, 1970; Bird and Munoz, 1983; Duran and Ntafos, 1984;
Pacheco et al., 2007; Tonella, 2004; Tufano et al., 2022; Wang et al., 2023); that
is, the code itself under test is not used to generate test cases. Tonella (2004)
proposed evolutionary test generation for classes (eToc), which uses genetic
algorithms to generate and mutate test cases using coverage as a measure of fit-
ness. Class tests often involve first constructing a class, then running a series of
class methods; the available mutation operations are thus to alter the construc-
tor, add or remove method calls, or change input values. EvoSuite (Fraser and
Arcuri, 2011) used a similar evolutionary approach, however, it also improved
upon existing approaches by optimizing entire test suites, not just single test
cases, for coverage.

More recent work has looked at various AI techniques for automating the
testing process. Tufano et al. (2022) propose a transformer-based approach to
generate assert statements for test cases from functions. Wang et al. (2023)

2.5. Conclusion 27

investigated how large language models may aid software testing and test case
generation; specifically, because of their ability to solve natural language pro-
cessing tasks. In the context of code reuse, developers typically have a natural
language task that specifies code function, and may be useful for test case gen-
eration using LLMs. Within the area of automated testing, there is the matter
of how to determine what test output is correct, or the oracle. Test cases that
crash a program or never complete can be detected, but other expected re-
sults are harder to predict. A common approach, as discussed above, is to use
code coverage to generate test cases and suites, but generated test cases still
require manual verification. In this sense, the ability for LLMs to understand a
developer’s natural language task may aid in determining expected output.

Some techniques have already been proposed to use test cases to help devel-
opers find runnable snippets. NLP2TestableCode (Reid, Treude, and Wagner,
2020), a plug-in for the Eclipse IDE, integrates testing into the editor, automati-
cally correcting and then testing snippets in an attempt to find snippets that run
without a developer needing to test each one. To do this, NLP2TestableCode
converts snippets into functions with input/output variables and generates JU-
nit test cases based on type information. To address the disconnect between
search queries and code, test-driven code search has also been proposed as
an alternative to natural language queries; CodeGenie (Lazzarini Lemos, Ba-
jracharya, and Ossher, 2007) helps connect developers to code snippets by using
test cases to describe what functionality they want.

2.5 Conclusion

In summary, code reuse is a wide field, where multiple techniques from different
areas may be relevant in automating the search, integration and testing stages
of reuse. The following chapters thus each detail work that builds from this
literature in order to work towards automating code reuse.

29

Chapter 3

Connecting Developers to Libraries
and Code Examples

Related Publication: This chapter is based on our paper: Brittany Reid,
Marcelo d’Amorim, Markus Wagner, and Christoph Treude (2023b). “NCQ:
Code Reuse Support for Node.js Developers”. In: IEEE Transactions on
Software Engineering 49.5, pp. 3205–3225. doi: 10.1109/TSE.2023.3248
113 (Reid et al., 2023b).

In the literature review (Chapter 2), we identify how code reuse is an impor-
tant part of software development, and that the adoption of code reuse practices
is especially common among Node.js developers, where the Node.js package
manager, NPM, indexes over 1 Million packages. Developers then often seek
out packages to solve programming tasks. However, due to the vast number of
packages, selecting the right package is difficult and time-consuming. With the
goal of improving productivity of developers that heavily reuse code through
third-party packages, we present Node Code Query (NCQ), a Read-Eval-Print-
Loop environment that allows developers to 1) search for NPM packages using
natural language queries, 2) search for code snippets related to those packages,
3) automatically correct errors in these code snippets, 4) quickly setup new
environments for testing those snippets, and 5) transition between search and
editing modes. In two user studies with a total of 20 participants, we find that
participants begin programming faster and conclude tasks faster with NCQ than
with baseline approaches, and that they like, among other features, the search
for code snippets and packages. Our results suggest that NCQ makes Node.js
developers more efficient in reusing code.

Code available on Github: https://github.com/Brittany-Reid/node_c
ode_query

https://doi.org/10.1109/TSE.2023.3248113
https://doi.org/10.1109/TSE.2023.3248113
https://github.com/Brittany-Reid/node_code_query
https://github.com/Brittany-Reid/node_code_query

30 Chapter 3. Connecting Developers to Libraries and Code Examples

3.1 Introduction

Node.js is a popular JavaScript runtime (W3Techs, 2020) often used to de-
velop server-side applications. The Node.js package manager, NPM, hosts over
1 million packages (Tal and Maple, 2020), with a typical package recursively
depending on several others; on average each package directly depends on 5.9
other packages (Kula et al., 2017). Despite such a rich package ecosystem, find-
ing the right package and figuring out how to use it can be time-consuming. The
vast number of options means that developers are unable to gain detailed un-
derstanding of all potential selections and thus make decisions based on limited
data. The typical package search process is similar to the code reuse example
explained in Section 1.2.1, where developers search online (e.g. using a general
purpose search engine or the NPM website), then evaluate relevant packages
by 1) installing the selected package and 2) testing the functionality of that
package (i.e., running code snippets) to decide if the package is fit for purpose.
If a developer needs to try multiple packages (for example, due to a lack of
features), this process can become time intensive.

We conducted a preliminary study to understand the challenges of developers
in finding packages. Our survey of 55 Node.js developers revealed that pack-
age use is indeed a common part of Node.js development, yet most developers
encountered challenges in finding packages, with the most common challenge
being insufficient documentation and code examples. To sum up, developers
have challenges determining how to use the packages they find.

To address the challenges of package search in the Node.js ecosystem, we pro-
pose Node Code Query (NCQ), a custom Read-Eval-Print-Loop (REPL) (Sande-
wall, 1978) which integrates 1) NPM package search using natural language
queries, 2) code snippet search, 3) automatic code snippet error correction,
4) automated setup of environments for testing those snippets, and 5) the abil-
ity to transition between search and editing modes. We conjecture that NCQ
is a useful development aid in an environment where much coding is related to
connecting snippets of code as opposed to developing code from scratch. To
reduce the effect of context switching on performance, NCQ integrates multiple
code reuse steps into one tool; package and code search, a code editor and a
shell to execute code and install packages.

Existing ideas from the literature in code and library search (Campbell and
Treude, 2017; Ponzanelli et al., 2014; Zhang et al., 2016; Brandt et al., 2010;
Ponzanelli, Bacchelli, and Lanza, 2013; El-Hajj and Nadi, 2020; Reid, Treude,
and Wagner, 2020) inspired NCQ. The novelty of NCQ is grounded on the ap-
plication of these ideas in a different context. Additionally, existing work in
automated code corrections for online code snippets (which uses static analysis
to detect errors as most snippets do not run and do not have test cases) has
focused on Java using the compiler(Reid, Treude, and Wagner, 2020; Terragni,
Liu, and Cheung, 2016; Licorish and Wagner, 2022a). However, no work has fo-
cused on the application of similar fixes in Node.js, or more broadly JavaScript,
which lacks such an error detection method. We conjecture that NCQ’s in-
teractive REPL can better assist developers in the common scenarios where
they wish to try out new software libraries quickly in an isolated environment.

3.2. Illustrative Example 31

Developers can avoid making changes in their local programming environment
when they want to borrow functionality from existing libraries. The combina-
tion of REPL, package and code search and code correction is non-trivial; they
have been adapted for this new context to be intuitive within a command-line
interface, and to reduce friction and context-switching. Our user studies aim to
validate these assumptions.

To validate the usefulness of NCQ, we evaluated the tool with Node.js de-
velopers. Participants’ activities were compared against a baseline comprising
of internet access and Visual Studio Code, which we identified as the most
popular editor for Node.js developers. We asked participants to complete two
basic programming tasks, first using the baseline, then using only the tool.
Our evaluation shows that participants were able to complete all tasks using
NCQ without context switching, at least as quickly as when they used a well-
established editor and had access to online search. Participant feedback for the
tool was generally positive in regards to helpfulness, confidence in solutions and
tool features. These results suggest that NCQ is a promising direction to fill
an existing gap in tool support for Node.js code reuse, reducing the burden of
context switching between searching and editing tools.

We make the following contributions:

⋆ Approach. A command line tool, NCQ that integrates documentation
from the NPM database, within a REPL with the ability to create tem-
porary environments, search for packages, install those packages, search
for and run related code snippets and edit submitted code like a tradi-
tional code editor, along with an evaluation in two user studies with a
total of 20 participants.

⋆ Artifacts. NCQ is publicly available on GitHub at https://github.c
om/Brittany-Reid/node_code_query.

3.2 Illustrative Example

In Section 1.2.1 we demonstrate the typical code reuse process. In Node.js this
process is similar, but typically focuses on the use of NPM packages. In this
section, we first describe the typical Node.js code reuse process, then we describe
how NCQ could improve on this process. Let us consider a scenario where a
developer would like to create a CSV file in Node.js. The developer would like to
use a package to solve this task; this can be a simple task to manually code, but a
package would save time and avoid mistakes. The following sections describe the
workflow two developers followed when solving Task 3 of our user study. In the
following, we describe the problem-solving process followed by two participants.
One participant was asked to use the internet to find packages and to code in
Visual Studio Code, while the other participant used only NCQ. Section 3.7.1
describes this task in more detail.

https://github.com/Brittany-Reid/node_code_query
https://github.com/Brittany-Reid/node_code_query

32 Chapter 3. Connecting Developers to Libraries and Code Examples

Figure 3.1. NPM website search results for “csv file”.

3.2.1 Typical problem solving in Node.js

This section describes the workflow of one participant from our user study, using
the internet and a traditional editor. We consider this workflow to be a good
example of typical problem solving in Node.js.

The developer starts by using a general purpose search engine (all partic-
ipants in our user study (Section 3.10) started with a general purpose search
engine). In this case, they enter the query “!npm csv file” into search engine
DuckDuckGo, which redirects them immediately to NPM’s search for the query
“csv file”. Figure 3.1 shows the first three results for this query, however, none
pertain to creating CSV files. After reading the names and descriptions of
these packages, the developer refines their search, using the query “csv file cre-
ate”. The developer looks through the results for this query, finding the package
node-create-csv which mentions converting an array into a CSV file, and se-
lects this package.

After being taken to the README file for this package, the developer can
see that it has some usage examples, including the example shown in Figure 3.2
which writes some data to a file.

1 const ObjectsToCsv = require(’objects -to -csv ’);
2

3 const data = [
4 {code: ’CA’, name: ’California ’},
5 {code: ’TX’, name: ’Texas ’},
6 {code: ’NY’, name: ’New York ’},
7];
8 (async () => {const csv = new ObjectsToCsv(data);
9 await csv.toDisk (’./test.csv ’);

10 console.log(await csv.toString ());})();

Figure 3.2. Usage example from the README for
node-create-csv. Note the incorrect package name.

The developer decides to try to use this package, so they create a new Node.js
project. First, they make a new directory for the project, then in that directory,

3.2. Illustrative Example 33

they use the command npm init -y to initialise the project, which creates a
special package.json file that stores metadata including a list of dependencies.
With the project configured, the developer now installs the package with the
npm install node-create-csv command.

With the package installed, the developer copies and pastes the example
into their editor. They modify the data being written to match the task’s
requirements, however, when they attempt to run the code, Node.js reports
the MODULE_NOT_FOUND error despite the package being installed. After some
investigation, the developer realises that the example imports a different pack-
age, objects-to-csv, and the error refers to this package not being installed.
The developer looks over the rest of the examples and sees the same issue, so
considers this package to be buggy and moves on.

However, during our post-session investigation, we found that node-create-csv
is a copy of an existing package with its documentation unchanged. Had the
developer known, they could have changed the import or installed the named
package instead to bug-solve, but developers often consider package documen-
tation and examples important in evaluating package quality. The developer
uninstalls the package using the command npm uninstall node-create-csv
and decides to look at the other packages NPM returned, which may have work-
ing examples.

1 let converter = require(’json -2-csv ’);
2 + const fs = require(’fs ’);
3

4 - let documents = [{Make: ’Nissan ’, ... },
5 + let documents = [{Name: ’Alice ’,
6 + Institution: ’Foo ’, Job: ’IT Manager ’ },
7 - {Make: ’BMW ’, ...}];
8 + {Name: ’Bob ’, Institution: ’Bar ’,
9 + Job: ’Developer ’}];

10 let json2csvCallback = function (err , csv) {
11 if (err) throw err;
12 console.log(csv);
13 + fs.writeFile (’./ people.csv ’,csv ,function(err) {
14 + if(err) return console.log(err) })
15 };
16

17 converter.json2csv(documents , json2csvCallback);

Figure 3.3. The modifications the developer made to complete
the task, with new lines marked in green with “+” and removed

lines in red with “-”.

The developer evaluates another three packages from their search results,
reading their documentation, however none have any examples in their README
files. Finally, the developer checks the json-2-csv package. In the README
for this package, there are no usage examples, but a link to some examples on
GitHub, where they find one example for writing a CSV file. They install the
package and paste the example in their editor.

Figure 3.3 shows how the example code for this package was adapted to solve
the assigned task. The original code snippet takes an array of data, documents,

34 Chapter 3. Connecting Developers to Libraries and Code Examples

and defines a callback function where the argument csv is printed to the console.
The developer modifies it so the array contains their data, and in the callback,
the string is written to a file called “people.csv”. They run this code and the file
is created successfully. In total, this participant took 18 minutes to complete
this task.

To sum up, this approach can be time-consuming for the following reasons:

• Developers need to search different sources to locate potentially useful
packages. When finding those package, developers need to read documen-
tation and check examples, when available;

• Not all packages have examples, making evaluating package quality more
difficult.

• The package of interest may not work as expected. Running code snippets
is important to make a decision on the package to use. For that, the user
needs to create temporary environments and (un)install packages on top
of those environments to test different packages.

3.2.2 Problem solving in NCQ

This section illustrates how developers solve tasks using NCQ, a tool to help
developers search for Node.js packages and experiment with related examples.
We describe the workflow of another developer in our user study. The developer
was asked to solve the same task from Section 3.2.1.

First, the developer starts the tool and uses the repl command to create
a new Read-Eval-Print-Loop (REPL) instance, where they can install packages
and execute code. The developer then uses the .packages <search string>
command from within the REPL to search for packages using the search string.
This command takes the developer to a list of packages and their descriptions,
which they can scroll through. Figure 3.4 shows the output the REPL produces
for the command .packages csv.

Figure 3.4. Results for the query ‘.packages csv’.

The list of packages allows for skimming many descriptions to quickly dis-
regard irrelevant packages, for example, csv2influx, which appears to import

3.2. Illustrative Example 35

CSV files into a database. NCQ sorts packages based on their runnability, and
excludes packages with no stars or no example code in their READMEs. The
first entry, csv-it, looks promising so they select it with the enter key. Upon
selection, the tool asks if they would like to install the package, to which they
respond “yes”.

Figure 3.5. Cycling through code snippets for the package
csv-it using the command .samples.

To evaluate a package, developers can use the .samples <package name>
command to retrieve code snippets for a given package, extracted from NPM
by scrapping the README file associated with a package. The developer uses
the command .samples to see examples for the installed packages. Figure 3.5
shows the code snippet for csv-it. The code snippet autofills the command
prompt; from here the developer can execute the code snippet like any other
code in the REPL by pressing enter, or cycle through other code snippets by
using the function keys F2 and F3. Each code snippet is evaluated using ESLint
to correct errors and run through NCQ’s error correction process. This process
fixes errors, enforces consistent style rules on snippets and comments out error-
causing lines, before being sorted by final error count to show error-free snippets
first.

In this case, there is only one code snippet, which demonstrates how to
write some data to a CSV file in two different ways. NCQ’s automated fixes
have added semi-colons where they are missing; Figure 3.6 shows the changes the
developer makes to the code snippet to complete their task. First, the developer
removes the second example. Next, they decide to run the code snippet by
pressing enter and see that it works as expected; a file named “first.csv” is
created with the columns “A” and “B” and two rows of values. After executing,
the developer uses the .editor command, which allows them to edit their
previously run code in a traditional editor, where they change the file name and
data before saving. On save, the REPL re-runs the code successfully. In total,
this participant took 15 minutes to complete the task.

36 Chapter 3. Connecting Developers to Libraries and Code Examples

1 const CsvIt = require ("csv -it");
2

3 - const testStream = CsvIt.writeAsync(‘first.csv ‘);
4 + const testStream = CsvIt.writeAsync(‘people.csv ‘);
5 - testStream.write({ A: 42 , B: 33 });
6 + testStream.write({ Name: "Alice",
7 + Institution: "Foo", Job: "IT Manager "});
8 - testStream.write({ A: 7 , B: -1 });
9 + testStream.write({ Name: "Bob",

10 + Institution: "Bar", Job: "Developer "});
11 testStream.end();
12

13 - const SECOND_PATH = ‘second.csv ‘;
14 - CsvIt.write(SECOND_PATH , [{ A: 42 , B: 33 } ,
15 - { A: 7 , B: -1 }]).then (() => {
16 - console.log("Done");
17 - return CsvIt.read(SECOND_PATH);
18 - }).then(res => {console.log(res);});

Figure 3.6. How the code snippet in Figure 3.5 was adapted.

In summary, NCQ combines ideas from existing work in code and package
search to aid code reuse by:

• Automatically setting up temporary environments that developers can use
to experiment with packages;

• Allowing developers to search for packages without leaving their program-
ming environment (El-Hajj and Nadi, 2020); developers only see packages
with example code, making the package to code process faster;

• Sorting packages by runnability to prioritise functioning packages; the
majority of developers in our user study were able to solve their task with
the first package they found;

• Embedding code snippets within the editor (Campbell and Treude, 2017)
and enabling developers to quickly try out different packages without leav-
ing the tool, while providing immediate error feedback when code is sub-
mitted, via the use of the REPL design. Developers are easily able to
check if code snippets work before making changes;

• The addition of a traditional editor mode so changes can be made to the
REPL’s state, which makes the REPL more intuitive for users;

• Automatically fixing errors and sorting snippets by number of errors to
reduce the amount of work developers do to reuse code (Reid, Treude,
and Wagner, 2020).

3.3 Dataset

NCQ uses a database of packages, package data and code snippets to enable its
search. Like previous work (Reid, Treude, and Wagner, 2020), we implement

3.3. Dataset 37

this database offline to avoid internet bandwidth issues. The following sections
describe how package data and code snippets were mined. Table 3.1 shows the
package data breakdown; our final dataset consists of 620,221 packages with
2,161,911 code snippets.

Packages as of May 2021 1,607,057
Packages with READMEs 1,298,170
Packages with non-empty READMEs 1,297,678

Packages with Node.js code snippets 620,221

Node.js code snippets 2,161,911

Table 3.1. Summary of dataset statistics.

3.3.1 Package Data

To enable the package and code search, we mined the NPM registry for NPM
package data. We chose to restrict our focus to a single package manager to
simplify automation. Many packages are also hosted across multiple package
managers, so focusing on a single one limits data duplication and the size of our
database. We selected NPM due to it being one of the most popular package
managers for Node.js. The registry maintains a list of all package names at the
URL https://replicate.npmjs.com/_all_docs. For each package, a JSON
file containing package data (e.g., README, description, author and link to
the repository) can be found at the URL https://registry.npmjs.org/<pa
ckage>.

There were 1,607,057 packages on the NPM registry as of May 2021. We
were able to mine the name, descriptions, keywords, README, last modifi-
cation date and repository URL for 1,298,170 packages. As NPM has a 64KB
limit on README length on the registry, we also downloaded the full README
from corresponding GitHub project, when linked. For 308,887 packages (19.2%
of all packages), there was no README available on either site. Next, we ex-
cluded empty README files, leaving us with 1,297,678 non-empty READMEs.
Finally, we limited our dataset to the 620,221 packages with at least one code
snippet, following the process in Section 3.3.2.

As the NPM registry does not contain repository data relating to package
popularity, we mined GitHub for additional package data, such as the number
of stars and if there was a licence. We then processed the README to count
number of lines, markdown code blocks of any language and if there were install
or run examples. We determined if there was a run or install example by looking
for the headings “install” or “usage”, or the use of the commands npm run or
npm install.

3.3.2 Code Snippet Extraction

Code snippets for the code search were extracted from README files. We
limited our focus to README files over other documentation as this was the

https://replicate.npmjs.com/_all_docs
https://registry.npmjs.org/<package>
https://registry.npmjs.org/<package>

38 Chapter 3. Connecting Developers to Libraries and Code Examples

easiest to systematically mine. It is worth mentioning that NPM recommends
all packages include a README (and consequently 80.8% of packages on the
registry have a README). Other forms of software documentation do exist,
but differ across projects, making it harder to mine. We also chose not to mine
repository code for snippets as downloading the source of every NPM package
would be very time intensive.

To extract code snippets, we looked for code blocks in the README Mark-
down. These code blocks often include language information for syntax high-
lighting, which we used to discard code snippets marked as a non-JavaScript
language (e.g., bash commands used to demonstrate package installation or
JSON for results of execution). However, as not all code snippets use syn-
tax highlighting, we also analysed the remaining dataset to further filter non-
JavaScript snippets. We excluded snippets starting with common commands
(npm install for example), and used a regular expression to look for JSON
objects.

As code snippet extraction is an automated process based on heuristics, we
manually verified the results using a statistically representative random sam-
ple of 384 READMEs (confidence level of 95% and a confidence interval of 5).
Two authors manually compared each README and the resulting code snip-
pets from our extraction process, checking for any missing or non-JavaScript
snippets. The authors had a Cohen’s Kappa agreement of 0.72 (substantial
agreement). Then, the authors met to discuss results and determine final cat-
egorisations. Using this data, we refined the extraction process to handle any
erroneous cases and reviewed again to verify. Ultimately, we were able to extract
2,161,911 code snippets from the 620,221 READMEs.

3.4 Survey

As a preliminary step in the design NCQ, we conducted a survey to understand
how developers find NPM packages and what challenges they experience. The
following sections describe our survey design and the results.

3.4.1 Survey Design

To find Node.js programmers, we recruited participants from Prolific1 –a plat-
form to recruit research participants– and employed a screening survey using a
series of programming knowledge questions adapted from Danilova et al. (Danilova
et al., 2021). Questions were designed to have a single ‘correct’ answer, so that
they could easily be used to verify if the participant had basic programming
knowledge. The full details of our screening, including questions and answers,
are available in a workshop paper (Reid et al., 2022).

Table 3.2 shows the set of questions we asked participants. Questions were
selected to give insights into the frequency of NPM package use, websites used

1https://www.prolific.co/

https://www.prolific.co/

3.4. Survey 39

Table 3.2. Survey Questions (Q)

Q1 How often do you Search for NPM packages?
Q2 What site do you use the most when searching for NPM packages?
Q3 What kind of challenges do you have searching for NPM packages?
Q4 What code editor do you use the most to program in Node.js?

to find packages and the challenges developers experience. In addition, to un-
derstand the way developers program in Node.js in general, we asked about
code editor usage (Q4).

We evaluated the credibility of participants using the framework proposed by
Rainer and Wohlin (Rainer and Wohlin, 2021). We aimed to recruit ‘perform-
ers’, in this case, software developers with real, relevant and recent experience
according to the R3 model. We used the programming skill questions to verify
real and relevant Node.js programming skill, and participants were asked how
often they programmed in Node.js to assess that the experience was recent.
Furthermore, we used Q1 to again assess relevancy of experience in regard to
package search; participants that answered ‘Never’ were not shown Q2 and Q3.

We received 680 responses, out of which 55 answered all questions correctly
and were determined to be Node.js programmers.

3.4.2 Survey Results

Figure 3.7. Responses to survey questions for 55 developers.
Q2 and Q3 record no response for developers who do not search

for NPM packages.

Figure 3.7 shows the results of our survey. We found that out of 55 develop-
ers, 45 searched for NPM packages (Q1) once every few months or more often
(81.8%). Considering these developers, the most popular websites to search
for packages were Google (44.4%) and the NPM website (35.6%), with most
developers (73.3%) reporting that they experienced challenges. The most com-
mon challenges mentioned were insufficient documentation and example code

40 Chapter 3. Connecting Developers to Libraries and Code Examples

(22.2%), followed by maintenance (15.6%) and security issues (13.3%). Devel-
opers highlighted issues finding packages outside the most popular, with one
developer saying “Maybe the biggest grip[e] is trying to find packages outside
of what’s popular that are well documented”. In general, most developers had
issues finding high quality packages with so many options on the NPM registry;
as stated by one developer “I also have a hard time finding out what all the
alternatives are to see what my options are”. The results for Q4 show that
VSCode was the most popular editor for Node.js within our sample. 65.5% of
developers answered VSCode, followed by IntelliJ at 14.5%. Therefore, we use
it as a baseline for the study described in Section 3.10.

In summary, package use was a common part of programming in Node.js,
but most developers had challenges finding high quality NPM packages.

3.5 Overview

Tool Baseline

NCQRetrieval NCQBasic + Web
NCQ VSCode + Web

Table 3.3. Comparison of baselines used in each evaluation.

To address the problem described in Section 3.2.1, we developed Node Code
Query (NCQ). NCQ is a command line tool for Node.js that integrates code
and package search into a REPL development environment. The tool extends
the existing Node.js REPL and, along with the ability to execute code, adds the
ability to search for NPM packages using natural language queries, find and run
example code snippets and install and uninstall packages, all without leaving
the environment. We first developed an initial version of NCQ, NCQRetrieval,
which focuses on retrieving packages and code snippets, then, using feedback
from a user study of 10 developers, we refined the tool further, adding additional
features, described in Section 3.9.

Table 3.3 shows each version of the tool and the baseline used to evaluate
against. For the first user study, we evaluate NCQRetrieval against a baseline
version of the tool with no search features and web access; we justify this deci-
sion as evaluating the impact of NCQRetrieval’s search features. For the second
evaluation, we then compare NCQ against a more realistic baseline of VSCode
and web access, to see how the tool performs against ‘typical’ processes. NCQ
contains all the features of NCQRetrieval, with additional enhancements such as
code correction to reduce time spent fixing errors and package search based on
runnability and not popularity. We do not evaluate the two variants against
each other as this research focuses on the comparison between automated and
manual code reuse techniques.

3.6. NCQRetrieval 41

NCQBasic

Node.js REPL (1) Environment Setup

(2) Code Execution

Commands

(4) Package Search

.packages <query>

.packages connect to sql

Process into keywords

[“connect",“sql"]

Search database by keywords

[set of retrieved packages]

Sort by stars

[sorted set]

Print table

(5) Code Snippet Search

.samples <package>

.packages mysql

Search code snippet
database

[set of retrieved code snippets]

Sort by order in README

[sorted set]

Autofill input
with code snippet

(3) Editor Mode

Figure 3.8. Overview of NCQRetrieval’s features. Features
shared with NCQBasic are highlighted in orange.

3.6 NCQRetrieval

The initial version of NCQ, NCQRetrieval, focuses on the problem of finding
packages and code snippets. As finding and testing packages is often a process
with many small tasks where developers may want to quickly try out different
packages, we implement NCQRetrieval as a Read-Eval-Print-Loop (REPL). The
REPL model is highly suited to this type of programming; developers receive
immediate feedback on execution of each line, and writing and executing code
are tied together. Figure 3.8 gives an overview of the features in NCQRetrieval;
1) the ability to set up environments, 2) code execution, 3) the editor mode, 4)
package search and 5) code snippet search.

3.6.1 REPL

Starting the REPL creates a new environment to execute Node.js code and
install packages. The tool creates a new directory and the necessary project files
that allow a user to install packages: (1) the package.json file, which stores
project details and directly installed packages, and (2) the package-lock.json,
which lists the entire dependency tree. These files are automatically updated
by the package manager when installing/uninstalling packages.

3.6.2 Editor Mode

To make programming in a REPL easier, NCQRetrieval includes an additional
editor mode that allows users to edit the state of the REPL in a traditional
editor. The default Node.js REPL maintains a context of executed code as

42 Chapter 3. Connecting Developers to Libraries and Code Examples

users submit code, but this cannot be modified besides overwriting previously
defined functions and variables. This often means that users need to rewrite
entire functions to fix errors. NCQRetrieval’s editor mode provides a simple text
editor that presents a user with their previously run code, where they can edit
or remove lines. On saving the file, the REPL state will be reset and the new
code will be run.

3.6.3 Package Search

NCQ’s package search relies on a database of NPM package information, as
described in Section 3.3. Packages are pre-processed to create a set of keywords
they are indexed by. First, package descriptions are separated into unique
words, then combined with the package’s keyword field, processed to remove
stop words (common, individually meaningless words like “the” and “to”). Then,
the remaining set of words are stemmed using the Porter Stemmer algorithm.2

Figure 3.9. Output of the .packages command.

A similar process is taken for queries using the .packages command, which
Figure 3.8 illustrates. For example, the query “connecting to sql” is first sepa-
rated into the words “connecting”, “to”, and “sql”, then stop words are removed,
leaving only “connecting” and “sql”. After stemming, the set of words is “con-
nect” and “sql”. For each of these words, a set of associated packages can be
retrieved; the final result is the subset of packages present in all sets, which
is sorted by stars then tabulated with information such as package stars and
descriptions to help users make a choice (Figure 3.9).

2https://tartarus.org/martin/PorterStemmer/

https://tartarus.org/martin/PorterStemmer/

3.7. NCQRetrieval Evaluation 43

3.6.4 Code Snippet Search

NCQRetrieval includes a code snippet search that allows developers to look for
example code snippets for a package. Each snippet in our dataset has an asso-
ciated package it originates from and an index based on the order of appearance
in the original README.

As shown in Figure 3.8, using the .samples command, code snippets be-
longing to the given package are returned in order of their occurrence in the
original README. Snippets autofill the command line and can be modified or
run without needing to copy and paste. We preserve the original order of code
snippets to enable developers to more easily understand the logical order some
snippets are intended to be executed in; not all code snippets run on their own
and they often leave out steps shown in previous snippets, for example, import-
ing the package. Related code snippets also remain grouped together due to
this order.

3.7 NCQRetrieval Evaluation

To evaluate NCQRetrieval we conducted a user study with 10 Node.js developers,
where participants completed programming tasks using the tool. We pose the
following related research questions:

RQ1. What is the influence of NCQRetrieval’s search features on the perfor-
mance of participants?
RQ2. What are the perceptions of participants about NCQRetrieval?

The purpose of RQ1 is to understand if the tool’s search features are helpful,
using the comparison baseline of a version of NCQ that lacks search features.
Instead, participants used the internet to find packages and examples. We used
the following metrics to measure the impact of NCQRetrieval’s search: 1) time to
completion, 2) how quickly developers found and installed packages and 3) the
number of packages developers tried. The purpose of RQ2 is to understand
developer perceptions of the tool. We analysed participant responses to a set
of questions we asked about their experiences after each task.

3.7.1 Experimental Design

This section describes the design of the user study, including how we selected the
tasks, what baseline we used, how we recruited participants, how we assigned
tasks to participants, how the sessions were run and what questions were asked
to participants.

Programming Tasks

As the user study focuses on solving tasks, task selection was important. To
represent real programming tasks, we looked at a list3 of mined Stack Overflow
questions from previous work on the NLP2TestableCode project (Reid, Treude,

3https://bit.ly/2HK5tLq

https://bit.ly/2HK5tLq

44 Chapter 3. Connecting Developers to Libraries and Code Examples

and Wagner, 2020). We looked for examples that could be solved in 20 minutes
or less by a developer with basic experience in Node.js. It is important to note
that, to facilitate the checking of the solutions provided by participants, we
modified the original tasks to specify example inputs. For example, to complete
task 4, we provide as input to the participant the SQL database to be used so
that we could validate the output.

We used the following five tasks:

1. Read a text file (any) from the file system to memory, using a package
other than ‘fs’. (Sources: Line 9893 of the task list and Stack Overflow
question 20186458.)

2. Create an array with ten randomly-chosen numbers and sort the array
with “merge sort”. (Sources: Line 585 and 99292 and SO questions
42033229 and 2571049.)

3. Use a package to create the CSV file people.csv with the contents:

Name, Institution, Job
Alice, Foo, IT Manager
Bob, Bar, Developer

(Sources: Line 3073 and SO question 59600762.)

4. Connect to a MySQL database that we provide and retrieve customers us-
ing the SQL command "SELECT customerName FROM customers WHERE
country = ‘Australia’;". (Sources: Line 221 and SO question 6597493.)

5. Create a directed graph in memory with the following edges {(a,b), (a,c),
(b,c), (c,d)}. The vertex “a” is the root of the graph. Print the vertices
on the console as they are visited in depth-first order. Print each vertex
only once. (Sources: Line 13232 and SO question 14483473.)

Participants were said to have successfully completed a task if they produced
a JavaScript file that, when run, satisfied the task description. Tasks were
designed so that it would be straightforward to determine completion.

Baseline

We designed the baseline of this evaluation as NCQBasic, a version of NCQRetrieval

with package and code search suppressed. NCQBasic’s features are highlighted
in orange in Figure 3.8. With NCQBasic, participants must search for packages
online, using the browser. We put no limits on what sites could be used for
search, instead of restricting them to just the NPM website, as the results of
our survey indicate that developers prefer to use generic search engines like
Google to find packages. Participants first solve a task using the baseline, then
using NCQRetrieval, in order to compare the effect of search on results while
reducing the impact of tool familiarity. We expect that developers would be
more familiar programming in a traditional editor and that this could have an
impact on results.

https://stackoverflow.com/questions/20186458
https://stackoverflow.com/questions/42033229
https://stackoverflow.com/questions/2571049
https://stackoverflow.com/questions/59600762
https://stackoverflow.com/questions/6597493
https://stackoverflow.com/questions/14483473

3.7. NCQRetrieval Evaluation 45

Participants

We hired 10 developers from online, for example, using social media sites such
as Twitter and Telegram. We offered participants $40USD and required fluency
in English and basic knowledge in Node.js. We estimated the total time of
a user session as follows: 10 minutes for presentation/training, 20 minutes to
run a task with NCQBasic, 20 minutes to run a task with NCQRetrieval and 10
minutes to answer questions after tasks (1hr total). Participants had an average
of 2 years experience with Node.js.

Assignment

Table 3.4. Fragment of task assignments.

participant task
a b c d e

1 N Y - - -
2 - N Y - -
3 - - N Y -
4 - - - N Y
5 Y - - - N

We used a typical combinatorial design to uniformly assign tasks to partic-
ipants. For space reasons, Table 3.4 shows a fragment of the design including
only 5 participants (rows) and 5 tasks (columns). A cell with the label “Y”
(respectively, “N”) indicates that a participant will be assigned to solve a given
task with NCQRetrieval (respectively, NCQBasic + Web). Note that every partic-
ipant executes one task with NCQRetrieval and one task with the baseline and,
in this design with 5 participants, every task is executed by two participants.
The design of this table is a Latin Square as the number of participants and
tasks are the same, but the actual design we used included 10 participants to
obtain a larger sample. Intuitively, that design can be obtained by repeating
the rows associated to participants 1-5 two times. With 10 participants, each
task is executed by 4 different participants: 2 participants using NCQRetrieval

and 2 participants using NCQBasic.

User Session

The user study was undertaken remotely using AnyDesk4, with participants
connecting at an agreed upon time with the instructor (first author of this pa-
per). Before the session, participants were asked to watch a video demonstration
of the tool5. At the beginning of the session, the instructor demonstrated the
features of each tool and then the participant attempted each task. After the
participant turned in each task, the instructor asked the participant to complete
a section of the questionnaire (see Section 3.7.1).

4https://anydesk.com/en
5https://youtu.be/C1PZ2g96eVo

https://anydesk.com/en
https://youtu.be/C1PZ2g96eVo

46 Chapter 3. Connecting Developers to Libraries and Code Examples

Tool documentation (e.g., keys and commands) was made available to par-
ticipants on the right side of the screen, with the tool itself on the left. Exper-
iments were run within a virtual machine with the necessary infrastructure to
run each task provided; for example, for task 4, the database was already set
up and a file was provided with the connection details. Snapshots were used to
restore the environment to the same initial state for each participant.

Audio and video (screen capture) were recorded for each session. The tool
was configured to record timestamped input (use of commands and submitted
code) into log files. At the end of each task the user’s REPL code was saved into
a file. An additional log of visited websites was transcribed from the session
recordings.

Questions

Table 3.5. Questions part A, B and C.

A1 How many years of experience do you have with Node.js?
B1/C1 Overall, did you consider the tool helpful to accomplish the assigned

task?
B2/C2 Grade your confidence, in a 1-7 scale, that your solution is correct

according to the problem specification?
C3 Did you consider the command “packages” useful?
C4 Did you consider the command “samples” useful?
C5 What features did you like about the tool?
C6 What you did not like about the tool?

Participants were asked to complete sections of a questionnaire via a Google
Form at the start of their session (Questions A), after the first task (Questions
B) and after the second task (Questions C). Table 3.5 shows the set of questions
labelled by stage; for questions B1-2 and C1-4 participants were asked to rank
agreement on a seven-level Likert scale.

Table 3.6. Features provided to users as answers (F) for C5.

F1 Ability to execute code through REPL
F2 Ability to search for packages
F3 Ability to search for code snippets
F4 Ability of using an editor to modify snippets (without leaving the REPL)
F5 The combination of code search and execution (virtualization) in a single

tool
F6 Ability to install and uninstall packages in an environment
F7 Ability to save work and resume from outside the tool (.save)
F8 Ability to access main functionalities through function keys

For each task we asked participants about their confidence in their solutions
(B1 & C1) and the helpfulness of the tool they used (B2 & C2). Additionally, in
Section C participants were asked about NCQRetrieval’s features, for example, if

3.7. NCQRetrieval Evaluation 47

they found certain commands useful (C3 & C4), what features they liked (C5)
and what they didn’t like (C6). For Question C5, participants were given the
list of features seen in Table 3.6 and allowed to select multiple options. The
questionnaire concluded with an option to provide suggestions.

Table 3.7. TAM (Technology Acceptance Model) questions.

D1 Using the tool would improve my performance in my job.
D2 Using the tool in my job would increase my productivity.
D3 Using the tool would enhance my effectiveness in my job.
D4 I would find the tool to be useful in my job.
D5 My interaction with the tool is clear and understandable.
D6 Interacting with the tool does not require a lot of my mental effort.
D7 I find the tool to be easy to use.
D8 I find it easy to get the tool to do what I want it to do.
D9 The quality of the output I get from the tool is high.
D10 I have no problem with the quality of the tool’s output.
D11 I would have no difficulty telling others about the results of using the

tool.
D12 I believe I could communicate to others the consequences of using the

tool.
D13 The results of using the system are apparent to me.
D14 I would have difficulty explaining why using the system may or may

not be beneficial.

At the end of the session participants answered questions based on the Tech-
nology Acceptance Model (TAM) (Davis, 1989), a model for measuring, predict-
ing, and explaining use of technology, including software. Our questions were
adapted from TAM2 (Venkatesh and Davis, 2000), which also incorporates job
relevance and output quality. These questions can be seen in Table 3.7.

3.7.2 Answering RQ1: What is the influence of NCQRetrieval’s
search features on the performance of participants?

Prior research has found that context switching (e.g., switching from a program-
ming environment to a web browser) can disrupt productivity (Proksch, Bauer,
and Murphy, 2015). In Section 3.7.1 we describe a version of NCQRetrieval with
no search features; instead, participants search resources online. We compare
this to NCQRetrieval, with the hypothesis that the integrated search features
will impact participant performance. The following sections elaborate on the
research questions (associated with RQ1) that we posed.

Was there impact on time to complete each task?

Figure 3.11 shows duration to solve tasks (in seconds), by participant and by
task, using NCQBasic (left) and NCQRetrieval (right). All participants solved
their tasks. We compare the difference in durations for each participant, and

48 Chapter 3. Connecting Developers to Libraries and Code Examples

Figure 3.10. Timeline of all participants across both user stud-
ies, grouped by task and treatment. The x-axis shows time in
seconds, markers show features used over time, with the first us-

age enlarged. Each bar is labelled by participant ID.

Figure 3.11. Duration of tasks by participant and by task.
Bars are labelled by task ID in the first figure, and by participant

ID in the second figure.

find that 7 out of 10 participants completed tasks faster when using NCQRetrieval

instead of NCQBasic. Participants 4, 6, and 10 were exceptions. Note that each
participant solved different tasks. The median time to solve for the baseline
was 936 seconds, while the median time for NCQRetrieval was 748 seconds.

Figure 3.10 shows a timeline of each participant’s session, grouped by task
and treatment. The figure also shows what features of each tool each participant

3.7. NCQRetrieval Evaluation 49

used to solve their tasks over time. Looking at the timeline for the three cases
of lower NCQRetrieval performance shows that these participants tried multiple
packages, searched for examples multiple times and had large amounts of time
between executions. In addition, two of these participants (4 and 10) were
assigned the same task (task 5).

Participants solving Task 2 and 3 in NCQRetrieval were faster than their
baseline counterparts, which can be seen in Figure 3.11. Combined with par-
ticipants 5 (Task 1) and 9 (Task 4), six participants solved their tasks faster
using the tool than all participants using NCQBasic for that task. The reverse
was only true for two participants, 5 and 9, who completed task 5 faster using
the baseline than both participants using the tool.

To explain the performance difference for Task 5, we can look at the task
and how participants tackled it. Task 5 has two associated parts, the creation
of a graph and the traversal of nodes in the graph. By looking at the commands
participants used to search and their transcribed web searches, we can see that
three of the four participants who completed this task focused on the graph
creation aspect first, neglecting the traversal of the graph. Only participant
9 using NCQBasic immediately searched for graph algorithms, focusing on the
depth-first search aspect of the task. Naturally, traversing a graph requires the
creation of a graph, leading this participant to find a correct package faster
than others. Other participants needed to install and experiment with other
packages to come to the conclusion that those packages would not help solve the
task as not all packages contain depth-first search functionality. Note that the
same participant also performed well when using NCQRetrieval in task 4, where
they only needed a single package install per task.

In summary, participants completed tasks in NCQRetrieval in most cases
faster than they did in NCQBasic.

Figure 3.12. Time taken to find the first package (darker), and
final package (lighter), by participant and by task

.

50 Chapter 3. Connecting Developers to Libraries and Code Examples

How long did participants take to install the first and last package?

The purpose of comparing the first and last install is to evaluate how long
participants spent evaluating packages. The first use of the .install commands
marks when participants stop search to try a package, and the last install tells
us how long it takes to find a suitable package to complete the task. Where
these are the same, it indicates that participants found a suitable package on
their first attempt.

As described in Section 3.7.1, we record the use of the .install command
along with a timestamp. Figure 3.12 shows the time to find first and last
package, by participant and by task. Bars of a single colour represent when the
first package was also the last package; this is the case for 60% of participants
using NCQRetrieval in contrast to 50% of participants in NCQBasic. We can
also see that in 60% of cases, participants installed the first package earlier
using NCQRetrieval as opposed to NCQBasic. Again, in 60% of cases participants
installed the final package earlier in NCQRetrieval than they did using NCQBasic.
The median times to find the final package for NCQBasic and NCQRetrieval were
250 seconds and 133 seconds respectively. To sum up, results suggest that,
compared to NCQBasic, NCQRetrieval enables participants to begin programming
faster and to conclude tasks faster.

Summary: Participants that used NCQRetrieval completed tasks
without ever leaving the command line interface of the tool. Fur-
thermore, participants using NCQRetrieval completed tasks at least
as quickly and correctly as they did in the baseline setting (NCQBasic

+ Web) where participants had access to web resources such as
Google and Stack Overflow.

3.7.3 Answering RQ2: What are the perceptions of par-
ticipants about NCQRetrieval?

The aim of RQ2 is to identify developer perceptions about NCQRetrieval and
its features, such as perceived usefulness which can be important for determin-
ing developers’ acceptance of new tools (Davis, 1989). The following sections
elaborate on the research questions (associated with RQ2) that we posed.

What was the participant perception of NCQRetrieval’s features?

For this question we investigate what features of NCQRetrieval developers found
most useful, and respectively, less useful. To measure this, we asked developers
a series of questions about NCQRetrieval’s features after their session, described
in Section 3.7.1.

First, we observed how developers used the features of NCQRetrieval. Fig-
ure 3.13 shows how many times developers used each feature while solving
tasks in both the tool and baseline. Recall that the commands .samples and
.packages are available only in NCQRetrieval. Overall, the most used feature
was the editor mode, used to write code, followed by the feature to retrieve

3.7. NCQRetrieval Evaluation 51

Figure 3.13. Usage of NCQRetrieval and NCQBasic’s features

samples. In NCQRetrieval, developers looked for packages 25 times, installed a
package 19 times and looked for samples 41 times.

For question C5, participants were presented with a list of features shown
in Table 3.6, and asked to select what they liked, where multiple selection was
allowed. Figure 3.14 shows how many participants selected each feature. All
participants found the code snippet search (F3) to be useful, with the package
search (F2) and editor mode (F3) also being well liked. These results show that
the search features of NCQRetrieval were the highest rated out of all features,
and suggest that almost all participants liked the core features of NCQRetrieval.

Figure 3.14. What features (Table 3.6) participants liked.

Similarly, we asked participants to rate the usefulness of specific commands.
Figure 3.15 shows how participants rated the .packages and .samples com-
mands using a seven-rank Likert scale. Overall, participants found both features
to be useful.

We did not ask participants to explain their answers, however, during the
session participants indicated issues accessing the function keys from Mac sys-
tems, which may explain results for F8 (see Figure 3.14). During the feedback
question, the participant who did not like the packages command indicated that
the tool should “focus on samples”. When asked for feedback at the end of the
questionnaire, participants provided suggestions for extending NCQRetrieval’s

52 Chapter 3. Connecting Developers to Libraries and Code Examples

Figure 3.15. Participant ranking of the usefulness of the com-
mands “packages” (Question C3) and “samples” (C4).

features, such as better package ranking, more interactive UI, and implement-
ing the tool as a plug-in for an existing editor such as Visual Studio Code.

While the editor mode was highly used and well rated, multiple participants
indicated that it was limited, lacking familiar controls, and that they would
prefer the tool open an external editor instead, with one participant suggesting
“this tool could have a vim mode”.

What was the general participant perception of NCQRetrieval?

This question investigates the general perceptions of NCQ. We answered the
question in two parts. First, we asked general questions about participant
confidence and the helpfulness of NCQRetrieval and NCQBasic. Then, we used a
popular procedure (Davis, 1989; Venkatesh and Davis, 2000) used to evaluate
acceptance of technology to guide our questions to participants.

Figure 3.16. Helpfulness ranking of tool and baseline.

General questions: We asked participants to rank how helpful each version of
the tool was on a seven-rank Likert scale (B1 & C1). We also used the same
method to measure how confident participants were in their solutions in each
tool (B2 & C2). Figure 3.16 & 3.17 show the responses to these questions.
Participants found NCQRetrieval considerably more helpful than the baseline; all

3.7. NCQRetrieval Evaluation 53

participants agreed that NCQRetrieval was helpful, compared to only 60% for
the baseline.

Considering confidence of solutions, results were similar between tools, with
most participants confident in their solutions, except for 2 participants answer-
ing “neutral” for NCQRetrieval. There are many factors that may have influenced
these results. We expected developers to be less confident doing something un-
familiar, in this case, searching for packages and examples using NCQRetrieval.
Additionally, all participants completed their tasks successfully in both treat-
ments suggesting that we may have overestimated the time budget. There is
also the fact that the design of both tools allows participants to execute code
before turn in. These impacts may have levelled the confidence observed within
the usage of each tool.

Figure 3.17. Confidence in task solutions.

TAM: In addition to assessing developer perception of features, we also surveyed
participants using 14 questions adapted from TAM2 (Venkatesh and Davis,
2000) (Technology Acceptance Model), detailed in Section 3.7.1. Figure 3.18
shows the responses for each of these questions.

Figure 3.18. Participant response to TAM questions.6

54 Chapter 3. Connecting Developers to Libraries and Code Examples

Overall, developers found NCQRetrieval to be useful, and their experiences
with the tool were positive. For question D14, most participants agreed they
would be able to explain how the tool could be beneficial, One participant
responded to all TAM questions negatively; this participant also indicated for
question C6 that they found the tool “a little difficult to navigate”.

Summary: Participants’ perceptions about NCQRetrieval were pos-
itive across all evaluated aspects. All 10 participants agreed that
NCQRetrieval was helpful to them in accomplishing the assigned task
(compared to 60% for NCQBasic). Searching for code snippets and
packages were reported as most popular features, and ratings for
perceived usefulness, ease of use, and likely future use (measured
by the Technology Acceptance Model) were comprehensively posi-
tive.

3.8 NCQRetrieval Limitations

NCQBasic

Node.js REPL (1) Environment Setup

(2) Code Execution

Commands

(4) Package Search

.packages <query>

.packages connect to sql

Process into keywords

[“connect",“sql"]

Search database by keywords

[set of retrieved packages]

(N1) Improved Package Search

Sort by ability to build

[sorted set]

Sort by has stars

[sorted set]

(N2) Interactive Package List

(5) Code Snippet Search

.samples <package>

.packages mysql

Search code snippet
database

[set of retrieved code snippets]

(N3) Code Correction

Run ESLint

errors, snippet

Parsing
Errors?

yes Line deletion

Get final error countno

Sort by errors

[sorted set]

Autofill input
with code snippet

(3) Editor Mode

Figure 3.19. NCQ’s features. The new features of NCQ,
in comparison to NCQRetrieval, appear in blue. Note that no

NCQRetrieval functionality was removed for NCQ

This section discusses the limitations of NCQRetrieval, and how a revised
version of the tool, NCQ, addresses those limitations.

6Scale reversed for D14.

3.9. NCQ 55

The findings from our user study provides evidence that NCQRetrieval enables
developers to search for and experiment with different packages with reduced
context switching. We observed that developers that use NCQRetrieval are at
least as quick and successful in their coding tasks as developers that followed a
“traditional” setup with access to search engines, the NPM website, and software
documentation from any web resource. We also observed that participants’
perceptions are positive across all evaluated aspects, with all participants finding
NCQRetrieval helpful in accomplishing their tasks.

However, the user studies we conducted revealed that NCQRetrieval can be
improved in important ways. The following list shows how we addressed user
feedback.

• Participants expressed that packages highlighted by the existing package
search were often not the best choice, as NCQRetrieval only uses GitHub
stars to rank packages. The results of our user study suggest that when
participants cannot find good packages immediately, and instead have to
try multiple packages, they spend more time on their tasks. Action: We
address this in NCQ by improving the package search ranking algorithm
by incorporating a measure of runnability, (see Section 3.9.1).

• Multiple participants expressed that the UI could be improved, especially
the package search UI. Participants mentioned that the table of 25 pack-
ages was visually noisy, with too many packages, and that NCQRetrieval

could be improved by becoming more interactive. In the user study, we
observed that most uses of the .packages command were followed by the
.install immediately after, i.e., participants installed packages immedi-
ately after the search. Participants either copy and pasted the package
name as part of the .install command, or referred back to the table.
Action: To address these issues, we replaced the table UI with an inter-
active, scrollable list of packages that takes up less space, and where users
can select a package from the list to install (see Section 3.9.1).

• We observed that most code snippets participants used in both techniques
did not run (Section 3.10.4) and participants spent a lot of time making
code snippets runnable. Action: To address this, we implement auto-
mated code corrections to reduce the need for developers to make these
changes. We also use the error information to rank code snippets (see
Section 3.9.2).

• NCQ also adds other, smaller features based on user feedback and real
developers’ usage patterns, to make the UI more intuitive. We detail
these features in Section 3.9.3.

3.9 NCQ

This section presents NCQ, a new version of our tool incorporating some of
the features requested by the participants from the previous user study. We
focus on two important observations: 1) package search is an important part of

56 Chapter 3. Connecting Developers to Libraries and Code Examples

programming in Node.js and 2) much of the code reuse process depends on mod-
ifying and bug-fixing code snippets. From those observations, we (1) improve
the package ranking in our search to focus on runnability, not just popular-
ity, (2) improve the package search with a more interactive UI, (3) implement
measures of code quality and error correction and (4) make common ways de-
velopers use the tool more intuitive. Figure 3.19 provides an overview of the
additional features of NCQ; blue rectangles highlight the new features. NCQ
retains all the features of NCQRetrieval, accessible in the exact same manner,
and the additional features do not add any significant performance overhead.

3.9.1 Improved Package Search

In Section 3.8 we discuss the limitations of NCQRetrieval’s package search. We
improve upon the star-only ranking by implementing a measure of runnability
for each package; we used an approach described in previous work (Chinthanet
et al., 2021) to predict the ability to build each package (i.e., install dependencies
and prepare working environment) as a proxy for its usability. This approach
uses a random forest machine learning model and eight package features from
our dataset to predict whether the package is able to build: if the package has
a licence, if there was a README file, the number of lines and markdown code
blocks in that README, the number of Node.js code snippets, if there was a
run and install example in the README, and the last update. As Figure 3.19
shows (box “Sort by ability to build”), the random forest’s prediction probability
of the ability to build is then used to rank packages in search results. It is worth
noting that all packages with no stars are moved to the end of results. We found
that 53.7% of packages in our dataset had no stars, thus this feature enables us
to maintain an aspect of (un)popularity in our search.

To address the limitations of the previous package search UI, NCQ imple-
ments an interactive package search. The .packages command returns a set of
packages; printing a list with all packages on the terminal would make it hard
for users to navigate. Our previous solution was to show a subset of packages
in a table. NCQ now uses a scrollable list, with terminal height, to show more
packages in a smaller space. This interactive design also enables the user to
“select” a package for installation upon pressing the enter key.

3.9.2 Code Correction

In Section 3.8 we identified that most code snippets needed fixes to run. To
address this, we implement automated code corrections based on similar work in
NLP2TestableCode (Reid, Treude, and Wagner, 2020). While our previous work
focused on Stack Overflow snippets and Java, code correction for JavaScript is
a unique problem.

Unlike Java, JavaScript is not a compiled language, so existing approaches
to identify errors like compiler usage cannot be re-implemented here. Instead,
existing work in JavaScript error analysis has used the popular linter ES-
Lint (Campos et al., 2019). As a linter, ESLint has code style rules, however,
what errors are reported can be customised and it has an automated fix API.

3.9. NCQ 57

We configure ESLint to report three categories of rules: errors for rules that
could indicate unrunnable code (for example, the no-dupe-args rule), warnings
for other erroneous code that does not stop execution but has fixes (e.g. the
rule requiring === use, which automatically replaces == where necessary) and
finally a select number of style rules as warnings to enforce a consistent style to
all code snippets in NCQ (indents and semicolons). We use the warning severity
to trigger ESLint’s fix API without counting minor issues as errors. We find
that with this configuration, 45.2% of code snippets in our dataset have linting
errors, of which 77.2% are parsing errors which ESLint cannot automatically
fix.

In addition to existing ESLint rules, we implement our own. One common
error was the use of import/export statements, which the REPL does not sup-
port. When running the parser using the sourceType “script”, to match the
REPL functionality, this code triggers a parsing error which cannot be fixed
using ESLint. However, if we enable the “module” mode, this no longer causes
an error. Instead, we implement a custom ESLint rule for this code. We also
implement a custom fix that replaces imports with require statements, which
most packages also support. With this fix, the error rate reduces to 35.1% of
code snippets. Finally, as most errors were parsing errors with no fixes, we im-
plement a line deletion algorithm similar to NLP2TestableCode. We comment
out lines where parsing errors occur until no more changes can be made or the
code snippet has no errors. The result is that 94% of code snippets have no
errors, however 54.2% of snippets fixed by the line deletion algorithm have all
lines commented out. To address this, we add an additional sorting mechanism
that places these ’comment-only’ code snippets at the end of the search results.

Figure 3.19 demonstrates how the error analysis and correction work to-
gether. When users search for snippets, each one is run through ESLint’s auto-
matic fixes and given an error count. If any of these errors are parsing errors, the
line deletion algorithm is run, before a final error count is determined. Finally,
the snippets are sorted by error count to prefer error-free snippets.

3.9.3 Additional Features

We add some additional features based on common use cases we saw in the
user study. We observed that participants used the editor mode often, and
some even pasted snippets directly into the editor. To automate this, opening
the editor with empty REPL state now asks the user if they would like to
load the previously seen snippet. We also observed that some code snippets
with constant variables, often used when importing a package, caused issues
for participants when trying to rerun snippets. This would cause cases where
code ran once but not again. To help with this, we renamed the default .clear
command to .reset (to differentiate it from “clearing the input”) and included
an additional error message for this case reminding them they could reset the
state of the REPL.

58 Chapter 3. Connecting Developers to Libraries and Code Examples

3.10 NCQ Evaluation

To evaluate NCQ, we conducted a user study involving 10 Node.js developers.
This time, we compared use of NCQ to the current state of practice, a tra-
ditional editor (Visual Studio Code) and online search, instead of an artificial
baseline. Section 3.5 describes the baselines for each evaluation. Similar to the
previous evaluation, participants were asked to complete two coding tasks with
and without NCQ and, after each task, they were asked to answer questions
about their experience.

We ask the following research questions about participant performance and
perceptions, similar to RQ1 and RQ2, as well as an additional question to
analyse NCQ’s new code correction feature:

RQ3. What is the influence of NCQ’s search features on the performance of
participants?
RQ4. What are the participants’ perceptions about NCQ?

RQ5. How effective is NCQ’s code correction?

3.10.1 Experimental Design

We maintain the same design as the first study, except where necessary changes
were made due to the use of a traditional editor. Participants were given the
same tasks, with the same assignment and most post-task questions remain
unchanged. This section describes the differences:

Baseline

We compare NCQ to the baseline of a traditional editor and internet access.
The aim is to measure how NCQ compares to a more realistic baseline con-
sisting of developers programming in a real editor and using online search to
find packages and examples. We selected Visual Studio Code, the most popular
editor among Node.js Developers, considering the responses we obtained in our
survey (Section 3.4). We setup VSCode as a clean installation with no exten-
sions, open to a new Node.js project and empty “index.js”, with the integrated
terminal open for executing Node.js code.

Participants

Due to difficulties finding participants for the first user study, we decided on
a more rigorous recruitment process, using the Prolific platform to recruit 10
participants. We verified that participants had basic Node.js skills using a
screening survey where participants were asked programming questions, which
we describe more in-depth in a workshop paper (Reid et al., 2022). Participants
had an average of 3 years experience. The recruited participants are a subset of
the same 55 developers who answered our initial survey questions in Section 3.4.

3.10. NCQ Evaluation 59

Questions

Participants were asked to answer questions after each task. This time, we
already had their demographic details from recruitment, so omitted section A.
We also omitted question B1 (helpfulness of the baseline tool) as participants
now use VSCode for their first task. Questions can be seen in Table 3.8.

Table 3.8. Questions asked (B) after task 1, and (C) task 2.

C1 Overall, did you consider the tool helpful to accomplish the assigned
task? (1 (Strongly Disagree) - 7 (Strongly Agree))

B1/C2 Grade your confidence, in a 1-7 scale, that your solution is correct
according to the problem specification?

C3 Did you consider the command “packages” useful?
C4 Did you consider the command “samples” useful?
C5 What features did you like about the tool?
C6 What you did not like about the tool?

At the end of the session participants were asked to answer the same TAM
questions as in the first evaluation.

3.10.2 Answering RQ3: What is the influence of NCQ’s
search features on the performance of participants?

The goal of RQ3 is to identify the helpfulness of NCQ’s features and how those
features are used by developers. As in RQ1, we hypothesise that integrating
package search within a programming environment reduces context switching,
improving developer’s performance. To answer this question, we compare how
participants performed searching for packages using NCQ and using the internet
when programming in VSCode.

Was there an impact on time to complete each task?

Figure 3.20 shows the task durations for both NCQ and the baseline. Again,
all participants solved their tasks. Participants completed tasks in NCQ faster
than in a traditional editor in 6 out of 10 cases, however, the median time to
solve for both were similar: 849 seconds for the baseline and 847 seconds for
NCQ.

The timeline in Figure 3.10 details each session, with participants 1-10 be-
longing to the first user study and participants 11-20 belonging to this study.
The icons remain the same as in the first study. Participants using VSCode +
Web (note the ‘search’ marker in the timeline figure) follow links to evaluate
the results of their search as opposed to cycling through snippets. In NCQ
versions participants can press enter to execute code or use the editor mode,
which we label as ‘submit’ or ‘editor’ in the timeline. In VSCode, we instead
transcribed when participants used the terminal to ‘execute’ their code, and
when they pasted code snippets from online into their open file. However, not

60 Chapter 3. Connecting Developers to Libraries and Code Examples

Figure 3.20. Duration of tasks by participant and by task.
Bars are labelled by task ID in the first figure, and by participant

ID in the second figure.

Figure 3.21. Time taken to install the first package (darker),
and final package (lighter), by participant and by task.

3.10. NCQ Evaluation 61

all participants pasted code snippets, instead some manually rewrote code while
making changes (e.g. 13, 15, 16 and 20).

The three fastest sessions using NCQ (11, 16, 17) involve only one install
and snippet search, conversely, the longest sessions (13, 18, 20) have many uses
of the snippet search. Again, as in the previous user study, we observe that the
number of times participants search may negatively impact their task duration.

How long did participants take to install the first and last package?

Figure 3.21 shows the times the first and last packages were installed. This
information reveals how long participants take in the “package search” phase of
their tasks. We observed that the final installed package was the package used
to complete the task in all cases. Participants’ first and last packages were the
same (only 1 package installed) in 8 cases for NCQ and 6 using VSCode. In
7 cases participants found their last package faster using NCQ than VSCode.
The median times to find the final package for the baseline and NCQ were 380
seconds and 57 seconds respectively. These results highlight the efficiency of
finding packages in NCQ.

Summary: Participants completing tasks using NCQ performed
better than when using VSCode. They were able to solve tasks
and find packages faster, in most cases finding a suitable package
immediately.

3.10.3 Answering RQ4: What are the participants’ per-
ceptions about NCQ?

The goal of RQ4 is to identify developer perceptions of the tools, such as help-
fulness, and confidence in their solutions. We ask the following questions:

Figure 3.22. How many times NCQ’s features were used.

62 Chapter 3. Connecting Developers to Libraries and Code Examples

What was the participant perception about the features that NCQ
offers?

The goal of this question is to understand participant perceptions of each of
NCQ’s features and to identify which features were useful or not.

Figure 3.22 shows the features that participants used the most. As in the
first study, the editor mode and the search for samples remained the most
popular features. Relative to the first study, there was an increase in the total
number of uses of the editor mode, but a reduction in the use of the commands
.packages and .samples. In the first case, the reduction may be attributed to
the changes to the editor mode whereas, in the second case, the reduction may
be justified by the fact that more participants solved tasks faster and with the
first package, reducing the need to look at more packages and their examples.

Figure 3.23. Number of participants that liked each feature of
NCQ. Features (F) are listed in Table 3.6.

Recall that Table 3.6 shows the list of NCQ’s features. According to question
C5 (see Table 3.8), the features that participants liked the most were the “ability
to execute code in the REPL” (F1) and “the combination of code search and
execution in a single tool” (F2). The feature participants liked the least was
F7, “the ability to save and resume”. This is a shift from the first study, where
snippet, package and editor mode were the most highly rated. In fact, the editor
mode was only selected by three participants despite being used frequently. In
general, most participants liked the core features of NCQ: the package (F2) and
code snippet search (F3), REPL execution (F1) and combination of search and
execution environment (F5).

Figure 3.24 shows how participants ranked the usefulness of commands
.packages and .samples using the same seven rank Likert scale from the pre-
vious user study. Eight participants agreed that both features were useful, with
only one strongly disagreeing with the samples feature (this participant then
answered for question C6 that they thought showing only code snippets and not
their surrounding documentation which “exists to guide the user” was limiting).
Despite this feedback, all participants were able to successfully complete their
tasks in NCQ, and the results of our user study suggests they performed simi-
larly or better than when they had access to this documentation in the baseline.
While we cannot conclude that a lack of documentation has a positive impact
on performance, in fact, pairing documentation and code snippets may have

3.10. NCQ Evaluation 63

Figure 3.24. Participant ranking of the usefulness of the com-
mands “packages” (question C3) and “samples” (C4).

improved performance further, we can argue that participants were not lim-
ited greatly because of it. In general, there was a slight decrease in agreement
between studies, but the result is still very positive.

What was the general participant perception of NCQ?

Figure 3.25. Participant rankings for helpfulness of NCQ (C1)

We asked participants to rank the helpfulness of NCQ; Figure 3.25 shows the
responses. Six out of ten participants agreed that NCQ was helpful in solving
their tasks, and only two participants disagreed. Agreement fell compared to
the previous study, however. We did not ask participants to rank the helpfulness
of the baseline, VSCode, in this task, but we conjecture that the comparison to
a more familiar traditional editor may have impacted participant perception of
NCQ compared to the previous evaluation.

Figure 3.26 shows the confidence (1-7 scale) of participants in their solutions
for each technique. We observe that confidence is similar between techniques;
nine participants scored their confidence highly for the baseline (score of 5 or
above), compared to eight for NCQ. Individually, four participants had their
confidence increase or stay the same, with the largest increase from a score of

64 Chapter 3. Connecting Developers to Libraries and Code Examples

Figure 3.26. Participant confidence ratings (B1 & C2).

1 to 7. For four other participants their confidence only fell by one point. This
decrease in confidence is also consistent with the first study. Overall, participant
confidence in solutions did not suffer considerably despite the use of a new tool
when compared to a more familiar baseline.

Figure 3.27. Participant response to TAM questions.7

Participants were asked the same TAM questions as the first study. Results
were not as overwhelmingly positive as the first study, however, responses were
still more positive than negative, as can be seen in Figure 3.27. All participants
agreed with D11 (no difficulty telling others about the results of using the
tool), and most participants agreed with D7 (easy to use), D10 (high quality of
output), D12 (could communicate to others the consequences of using the tool)
and D13 (results of using the system are apparent). However, most participants
disagreed with D3 (using the tool would enhance my effectiveness in my job),
and six participants agreed with D14, that they would have difficulty explaining
why the system may or may not be beneficial.

Summary: Participant perception of NCQ was generally positive;
most participants were confident in their solutions and found the
tool helpful, despite the comparison to a more familiar baseline,
VSCode. Using the Technology Acceptance Model to measure, most
participants found NCQ easy to use, with a high quality of output.

7Scale reversed for D14.

3.10. NCQ Evaluation 65

3.10.4 Answering RQ5: How effective is NCQ’s code cor-
rection?

The goal of this research question is to evaluate the impact of NCQ’s code cor-
rection features on code snippet quality. First, we observe that 33% (27/81) of
code snippets retrieved by participants using NCQ had errors fixed. To measure
the effect of this, we compare the quality of code snippets participants inter-
acted with across all sessions, including the previous user study. We reason that
NCQ should improve the quality of code snippets through its code correction
features.

For the purpose of this analysis, we define:

• “seen” as the set of all code snippets participants encountered during their
task solving, which they evaluate to select snippets to use. For NCQ,
we counted all code snippets that participants saw using the .samples
command, which were automatically logged. However, for online search,
we manually logged from video all snippets that were visible in the web
browser. Partial snippets (those that the participant did not scroll down
far enough on a web page to see entirely) are excluded as we do not have
the entire snippet to evaluate. Likewise, we argue that participants could
not have evaluated these snippets for use without seeing them in full.

• “attempted use” as the subset of “seen” that participants attempted the
code reuse process with; that is, participants copied these snippets into
their editor, before making changes and/or running them.

• “successful use” as a subset of “attempted use”, where any part of a code
snippet was successfully used by a participant to complete their assigned
task.

To evaluate the quality of code snippets, we look at both linting and runtime
errors. We use the same ESLint configuration used in NCQ to detect linting
errors. To measure the presence of runtime errors, for each code snippet, we cre-
ated a Node.js project, installed any needed packages and ran the code snippet
in a file. While existing work has shown that most code snippets in documen-
tation do not execute (Chinthanet et al., 2021), instead many are missing parts
and may not be intended to be fully working examples, we still consider this
measure to be useful for comparison purposes. Developers reusing example code
must still transform unrunnable code into runnable code, and runtime errors
may represent work needed. The goal of automated error correction is to reduce
this work, making runtime errors a useful measure.

Figure 3.28 compares the two baselines and two NCQ variations from both
evaluations. We found that in the first user study, 60% of seen and 55% of
used code snippets did not run, and that 22% of seen snippets and 24% of used
snippets have linting errors. For the NCQ user study, the runtime error rate
remains similar for seen and used at 66% and 64% each, however, we see a large
reduction in linting errors with the code correction features of NCQ. While the
number of seen snippet linting errors in the baseline remains similar at 12%,
code snippets found using NCQ had an error rate of 8%. Even more, none of

66 Chapter 3. Connecting Developers to Libraries and Code Examples

Figure 3.28. Code snippet breakdown for each technique.

the snippets participants used had any linting errors. We also see a 5% increase
in the proportion of used snippets that were used successfully, which is not seen
in the first user study.

Additional observations from this analysis can be made. In the first study,
using NCQRetrieval’s search features, participants were able to see more code
snippets more quickly than in the baseline, despite attempted use rate remaining
the same. However, in NCQ, we see that participants saw less snippets, and
also attempted to use less snippets, than in the baseline, following the trend of
participants being more efficient while using NCQ.

For all techniques, we see that there are more code snippets with runtime
errors than there are with linting errors. This is a strong indication that there is
room for improving the error detection in NCQ, and in improving static analysis
in JavaScript in general.

Summary: NCQ’s code correction features were employed on 33%
of code snippets, and reduced the number of snippets with errors
seen and used by developers; all code snippets participants used
in NCQ had no linting errors. However, we saw no reduction in
runtime errors, indicating there is room for better static analysis of
JavaScript code for error detection and thus error correction.

3.11 Discussion

Developers increasingly rely on gluing existing code together as opposed to de-
veloping new code (Abdalkareem et al., 2017). Node.js developers in particular
have access to a rich ecosystem of 1M+ software packages through NPM. How-
ever, navigating this wealth of potential code solutions is a challenge. One user

3.11. Discussion 67

study participant summed up their experience with: “Sometimes there isn’t
enough information on each package, and it is very tiring to install/uninstall
everything before having a good idea of what it does”. Searching and installing
packages is a time sink, as described by another participant: “It’s not unusual
to spend more than a [sic] hour looking for a package for simple job”. Yet, in-
stalling packages and running corresponding code snippets are crucial activities
in deciding whether to use a package. Alleviating these challenges is the goal of
NCQ, as summarised by a participant: “Finding a suitable package can be dif-
ficult given the volume of packages available. It can become tiresome installing
packages and trying out code, constantly referring back to documentation or
the dedicated package page on npmjs.com. The .samples feature of NCQ looks
to reduce the time taken to test packages, to determine if the package provides
benefit, and is suitable for a given project.” When using NCQ, developers do
not need to context switch between editor and search engine; instead they can
explore packages, install and uninstall them, and run code snippets from within
the same command line interface.

NCQ supports developers’ desire to try out code snippets quickly and exper-
iment with different potential solutions when embarking on a new task. Even for
trivial tasks, developers commonly use third-party packages (Abdalkareem et
al., 2017), and NCQ supports this workflow. We observed that the typical usage
pattern participants followed in NCQ was to search for packages, then search
for samples within those packages. The example in Section 3.2.2 describes such
a workflow based on a real user study session, and we observed similar workflow
for online search; most participants started by looking for packages and pack-
age documentation on NPM or GitHub, with only a few accessing tutorial sites.
This reveals the need for Node.js specific development tools to fit the workflow
of Node.js developers.

For NCQ, we improved upon NCQRetrieval based on the feedback obtained
from users of the tool. The results of NCQ’s evaluation indicate that the tool
enables developers to be more efficient finding packages than both NCQRetrieval

and a traditional editor combined with internet access. For example, the av-
erage task completion duration reduced from 1,045 seconds for NCQRetrieval,
to 774 for NCQ. However, despite this performance improvement, we see that
developer perceptions of NCQ were harsher. There are multiple factors that
may explain this. For the first study, most participants were students, and
we did not verify Node.js skill; in contrast, for the second study, we made the
additional effort to recruit participants with a minimum level of Node.js skill
while trying to recruit non-student programmers. This difference in experience
between the two groups may impact perceptions of the tools and our ability to
compare the two evaluations. Also, the different baselines may have impacted
how developers perceived each tool. In the NCQ evaluation we directly contrast
the tool to a more familiar baseline; participants use NCQ directly after using
VSCode. However, in the NCQRetrieval evaluation participants use a baseline
that is simply NCQRetrieval with reduced features; there may be a perceived
‘improvement’ between the two tasks, and participants were not faced with a
direct comparison between NCQRetrieval and tools they use regularly to pro-
gram. Despite all of this, results did remain similar, and in most cases still

68 Chapter 3. Connecting Developers to Libraries and Code Examples

positive.
Our findings provide evidence that NCQ still performs well even when di-

rectly compared to a familiar, professionally developed baseline such as VSCode.
Our evaluation confirms that NCQ was well received by developers because it
reduces the need for context switching typically associated with reusing third-
party code.

3.12 Threats to Validity

Similar to other empirical studies, there are threats which may affect the validity
of our evaluation of NCQ.

Threats to the construct validity correspond to the appropriateness of the
evaluation metrics. We evaluated NCQ in terms of participant performance and
participant perceptions. Our evaluation approaches, such as the Technology Ac-
ceptance Model, have been used before in similar studies (e.g., (Steinmacher et
al., 2016)), and our evaluation methodology reflects our goals behind developing
NCQ.

Threats to the internal validity compromise our confidence in establishing
a relationship between the independent and dependent variables. Participants
were not informed exactly how versions of NCQ (NCQRetrieval, NCQBasic and
NCQ) were implemented to ensure that their behaviour and responses would not
be biased towards any of the tools. In both evaluations, participants worked on
different tasks using both the tool and a baseline, which may have affected their
experience and responses to our questions. The demonstration of how to use
the tools at the beginning of each session may have influenced how participants
used them; we mitigated this by having all participants watch the same demo
video before their sessions. Because the study was conducted remotely, we
cannot guarantee that participants did not search for solutions outside of the
study setup. Participants were asked to use the web to find packages in task 1,
however, were free to choose what websites to use; in this case, the choice of
search engine, and thus knowledge of what options exist, may have influenced
results. The design of our survey and participant screening was intended to
minimise the number of non-programmer responses in our data, however, these
measures may have had additional impacts on the participant pool.

Threats to external validity correspond to the ability to generalise our re-
sults. We cannot claim generalisability beyond Node.js or the particular im-
plementations of NCQ and NCQBasic used in our study. Recruiting more or
different developers to participate in the study and asking them to work on
different tasks may have led to different results. We cannot conclude that im-
provements in performance between baseline and tool were due to any specific
techniques or the automation of the process itself.

3.13. Conclusion and Future Work 69

3.13 Conclusion and Future Work

The results of our evaluation indicate that Node.js developers have distinct ex-
pectations for a code reuse tool, stemming from Node.js’s package-based ecosys-
tem. In general, we found that performance of participants in solving tasks did
not reduce when using NCQ compared to a more familiar baseline of VSCode
and web access, despite the use of an unfamiliar tool with new commands
and controls. We found that the perceptions participants had about NCQ were
generally positive, with most participants finding NCQ helpful in accomplishing
their assigned tasks. Participants’ responses to questions about usefulness, easy
of use and likely feature use using the TAM (Technology Acceptance Model)
were also mostly positive. We also observed that NCQ’s code correction fea-
tures successfully improved the quality of snippets that participants interacted
with.

However, our results also indicate that there is more that can still be done
to aid developers in streamlining the code reuse process. Better measures of
package quality could be investigated other than popularity and runnability.
Future work may also involve implementing NCQ in a different context, for
example, many participants mentioned they would like an extension to their
existing editor over a new tool. To enable package and code snippet search in
an editor, we could implement NCQ as a plug-in for VSCode. Future work
could also expand on code snippet sources; the current version of the tool only
uses examples from README, however, we found that just 38.6% of NPM
packages had code snippets in their READMEs. In these cases, mining API
usage examples from NPM package source code may be useful. We observed
that when participants tried multiple packages, such as in the examples in
Section 3.2, they were looking for similar packages; the package search thus
could incorporate a ‘similar’ package suggestion system, using package data to
determine package ‘similarity’.

As the Node.js ecosystem is always growing, the ability to update the tool’s
database would be useful (we use an offline database for efficiency). Currently,
to update the database, the mining process must be re-run, but it may be
possible to use the NPM registry API to keep the database up-to-date. As
existing code search tools include online search, we did not investigate this
aspect in this paper.

Acknowledgement

This research was partially funded by INES 2.0, FACEPE grants PRONEX
APQ 0388-1.03/14 and APQ-0399-1.03/17, CAPES grant 88887.136410/2017-
00, CNPq grant 465614/2014-0, and by ARC grants DP200102364 and DP210102670.
Brittany’s research was supported by an Australian Government Research Train-
ing Program (RTP) Scholarship. The work of Christoph and Markus was sup-
ported by gifts from Facebook and Google.

71

Chapter 4

Correcting Code Examples

Related Publication: This chapter is based on our paper: Brittany Reid,
Christoph Treude, and Markus Wagner (2023). “Using the TypeScript
compiler to fix erroneous Node.js snippets”. To appear in: 23rd IEEE
International Working Conference on Source Code Analysis and Manipu-
lation (Reid, Treude, and Wagner, 2023).

As discussed in Chapter 2, most online code snippets do not run. This
means that developers looking to reuse code from online sources must manually
find and fix errors. We present an approach for automatically evaluating and
correcting errors in Node.js code snippets, in order to aid developers during the
code reuse process: Node Code Correction (NCC). NCC leverages the ability of
the TypeScript compiler to generate errors and inform code corrections through
the combination of TypeScript’s built-in codefixes, our own targeted fixes, and
deletion of erroneous lines. Compared to existing approaches using linters, our
findings suggest that NCC is capable of detecting a larger number of errors per
snippet and more error types, and it is more efficient at fixing snippets. We find
that 73.7% of the code snippets in NPM documentation have errors; with the
use of NCC’s corrections, this number was reduced to 25.1%. Our evaluation
confirms that the use of the TypeScript compiler to inform code corrections is
a promising strategy to aid in the reuse of code snippets from online sources.

Code available on Github: https://github.com/Brittany-Reid/node_c
ode_correction

https://github.com/Brittany-Reid/node_code_correction
https://github.com/Brittany-Reid/node_code_correction

72 Chapter 4. Correcting Code Examples

4.1 Introduction

Most code snippets online do not run; existing work has shown that only 15.2%
of Node.js snippets in NPM package documentation are runnable (Chinthanet
et al., 2021). Because software developers frequently reuse code from online
sources (Baltes and Diehl, 2019), they often need to dedicate time to fixing
errors. This introduces challenges when using third-party libraries: examples
in documentation are intended to demonstrate usage and non-working snippets
can present a barrier to getting started.

Because code snippets are not full, runnable programs with test cases, exist-
ing work in automating the detection and fixing of errors has primarily focused
on static analysis (Reid, Treude, and Wagner, 2020; Yang, Hussain, and Lopes,
2016; Reid et al., 2023b; Campos et al., 2019; Licorish and Wagner, 2022a;
Licorish and Wagner, 2022b). Code reuse tools such as NLP2TestableCode (Reid,
Treude, and Wagner, 2020) and NCQ (Reid et al., 2023b) combine error detec-
tion with heuristic fixes and line deletion to aid developers in reusing snippets.
This use of line deletion aims to reduce snippets to an optimal form through a
simple deletion operation, looking at errors to determine if the change should
be ‘accepted’. Static analysis is also useful for measuring the quality of code;
existing code reuse tools have made use of parsers, linters and compilers to re-
port errors and find the ‘best’ snippet for a given search query (Reid, Treude,
and Wagner, 2020; Reid et al., 2023b). Additionally, such tools can provide in-
sights on the quality of online code in general: for example, Yang et al. (Yang,
Hussain, and Lopes, 2016) looked at the usability of Stack Overflow snippets
via static analysis.

Research in Java leverages the compiler for error detection and correc-
tion (Terragni, Liu, and Cheung, 2016; Reid, Treude, and Wagner, 2020), but
JavaScript (and thus the Node.js runtime environment), is an interpreted lan-
guage that lacks such a compiler. Similar work has instead relied on parsers
and linters (Yang, Hussain, and Lopes, 2016; Reid et al., 2023b; Campos et al.,
2019). For example, NCQ (Reid et al., 2023b), a command-line REPL (Read-
Eval-Print-Loop) programming environment, which automates the process of
reusing code snippets from NPM package documentation, uses ESLint (ESLint,
2023) to report errors, and increases the number of snippets without errors from
54.8% to 94.0%. However, these tools serve a different purpose than the com-
piler (formatting code or generating ASTs), so the errors reported may be more
limited; for example, the majority of ESLint rules are stylistic or best practice,
not programming errors that affect runnability (Campos et al., 2019). Addi-
tionally, both ESLint and the SpiderMonkey parser report only a single error
if they fail to parse. ESLint needs to successfully parse a snippet to create an
AST and run its rule detection. Unlike a compiler, ESLint does not do any type
checking. This reveals the need for a better way to evaluate errors in Node.js
code.

We investigate how effective the TypeScript (Microsoft, 2023b) compiler is
for reporting and fixing errors in Node.js snippets, which is a novel contribution
to an area that has otherwise relied on linters and parsers. While TypeScript is
a superset of JavaScript with static typing, the compiler is used in VSCode to

4.2. Motivating Example 73

provide error highlighting and fix suggestions for JavaScript as well (Microsoft,
2023c), suggesting it may be more useful for error detection and correction than
existing approaches. The existing in-editor implementation requires a degree
of manual interaction to handle errors; we take TypeScript’s fix suggestions
and apply them automatically on given snippets. Furthermore, we implement
a limited set of heuristic fixes targeting the most common errors, leveraging
TypeScript’s ability to generate ASTs and provide type information. We present
our approach, Node Code Correction (NCC), which adapts NCQ’s corrections
to use the TypeScript compiler in place of ESLint, including targeted fixes and
line deletion. We run both approaches with a dataset of more than two million
NPM code snippets and then evaluate NCC against a dataset of Stack Overflow
snippet edit pairs representing manual error corrections over time. We report
the following findings:

• The TypeScript compiler reports more errors than ESLint: on average 6.8
vs 1.3 errors per snippet. ESLint reports a single error and no AST for
47.46% of erroneous snippets, while TypeScript generates ASTs for all but
230 snippets (0.002%) where compilation either crashed or timed out.

• TypeScript enables NCC to improve the rate of error-free snippets by
184.67% compared to 72.60% for NCQ, with less empty snippets (7.41%
vs 14.33% of the dataset).

• ESLint’s built-in fixes had a negligible impact on NCQ’s code corrections;
only 1 snippet was made error-free. In contrast, TypeScript’s codefixes
corrected 79,613 snippets.

• 1,099 (6.88%) of 15,969 Stack Overflow snippets were manually made error
free between versions; in comparison, NCC was able to correct 46.77%.
Of this 1,099 that were fixed manually, NCC could fix 66.06%.

These results provide evidence that the TypeScript compiler can be useful in au-
tomatically identifying and fixing errors, to help reuse online code snippets. We
conjecture that further improvement to heuristic fixes can increase the num-
ber of corrected snippets. Our approach and related data are available at:
https://doi.org/10.5281/zenodo.8272874

4.2 Motivating Example

A developer wants to read some data from a URL in Node.js. Let us say that the
developer comes across the snippet in Figure 4.1 (an unedited Stack Overflow
snippet from our dataset) while searching on Google. Like many snippets found
online, it has errors.

The developer pastes the snippet into their file, but it fails to run with the er-
ror ‘SyntaxError: Unexpected token ’}”, due to a hanging bracket. Furthermore,
the TypeScript compiler identifies a number of other issues with the snippet:
the identifier url, and http are also undefined. As we find in Section 4.5, these
are common errors, as example code often omits parts to simplify the snippet.

https://doi.org/10.5281/zenodo.8272874

74 Chapter 4. Correcting Code Examples

1 http.get(url , function(res) {
2 var data = ’’;
3 res.on(’data ’,function(chunk){data+= chunk ;});
4 res.on(’end ’,function (){
5 console.log("BODY: " + data);})
6 }).on(’error ’, function(e) {
7 console.log("Got error: " + e.message);});
8 };

Figure 4.1. Example code snippet from Stack Overflow answer
45582298.

1 + const http = require ("http");
2 + var url = "Your Value Here"; // Suggested Type:
3 + string | RequestOptions | URL
4 http.get(url , function(res) {
5 var data = ’’;
6 res.on(’data ’,function(chunk){data+= chunk ;});
7 res.on(’end ’,function (){
8 console.log("BODY: " + data);})
9 }).on(’error ’, function(e) {

10 console.log("Got error: " + e.message);});
11 -//};

Figure 4.2. Code snippet after NCC’s corrections.

However, running NCC before using the snippet results in a snippet that
reports no errors, as shown in Figure 4.2. Using TypeScript, NCC detects
these errors before without needing to run untrusted code. Using custom fixes,
NCC adds the missing http require statement; then for the undefined url, a
placeholder value is declared with suggested types to guide the developer. Line
deletion then removes the hanging bracket. From this snippet, the developer
can make the necessary changes needed to make the snippet runnable.

1 + var https = require(’https ’);
2 + var url = ’https :// www.alphavantage.co/query ...’;
3 + exports.handler = function (event , context) {
4 \ https.get(url , function(res) {
5 ...});
6 };

Figure 4.3. Excerpt of the manually corrected snippet.

We can compare these changes on the original, erroneous version of the
snippet, to the manually fixed snippet from our dataset. Similarly, the manually
corrected snippet adds the missing url variable, which is a string URL. It also
adds a require, but changes the library to https to match the URL. To correct
the hanging bracket, the code has been wrapped in an exported function.

In contrast, ESLint reports only a single parsing error for the original snip-
pet, and so the only change is to comment out the bracket. This motivating

4.3. Approach 75

example illustrates how the capabilities of the TypeScript compiler can be used
to help with corrections that benefit developer workflows.

4.3 Approach

Code Corrections

Snippet

1) Compile

Has Errors? Yes

2) Targeted Fixes

Has Errors?No

Yes

3) TS Codefixes

Has Errors?No

Yes

4) Line Deletion

No

Done

Figure 4.4. The NCC pipeline.

Node Code Correction (NCC) has four stages, illustrated in Figure 4.4;
1) compilation to identify errors; 2) targeted fixes; 3) TypeScript codefixes
and finally 4) line deletion. Each snippet is initially compiled to check for
errors; then, for erroneous snippets, the code correction process begins. First,
a series of heuristic custom fixes are attempted; if errors continue to exist, then
TypeScript’s built-in codefixes are applied where available. Finally, line deletion
is employed to handle remaining errors. After any change, the code is compiled
again to update the error information. This section describes each aspect of
NCC.

4.3.1 Identifying Errors

Identifying errors is the first step to correcting errors. To do this, NCC uses
the TypeScript compiler from version 4.9.4 of the TypeScript package. To
optimise compilation speed, the TypeScript compiler is run programmatically
and in-memory for a given string of code, using a custom CompilerHost that
handles the interface between the compiler and the ‘file system’. This custom
CompilerHost stores the code string as an in-memory sourceFile, instead of
looking on the file system. Furthermore, we cache any required files (such as

76 Chapter 4. Correcting Code Examples

TypeScript definition files) between compiles. By default, the TypeScript com-
piler will check all loaded files for errors, considerably slowing down the compi-
lation time, so we specify only looking at our single input file. The TypeScript
compiler is then isolated from other code, by only allowing it to access files in
the ‘typescript’ and ‘@types/node’ folders that are needed for TypeScript to
function.

We configured the compiler with options to match a default v18.16.0 Node.js
environment. For example, we enabled Node.js types and did not allow JSX
(JavaScript XML) because the dataset is meant to be Node.js code only. To trig-
ger the TypeScript compiler’s JavaScript mode, the in-memory file was named
with a ‘.js’ file ending. Due to the size of the dataset, for this investigation of
the entire NPM registry, we do not try to install each snippet’s source package,
though the TypeScript compiler is capable of deriving additional type informa-
tion that could have enabled more accurate type information. Additionally, the
need to install packages for each snippet would increase the time to fix, which
is one of the benefits of static analysis like this. We simply ignore the ‘Cannot
find module’ error on require statements, and the compiler will then continue
to generate general Node.js errors. On compilation, the compiler generates a
list of diagnostics, including error code, message, start location, and length. To
deal with rare cases where the compiler threw an error or never finished com-
piling (230 snippets), we run the compiler in a separate process with a timeout
of 60 seconds.

4.3.2 Targeted Fixes

On the basis of our experimentation with prototype versions of NCC, we devise
a series of custom heuristic fixes that address common errors that other stages
cannot correct. Our heuristics for identifying and correcting errors thus embody
a series of iterative enhancements that integrate lessons learned from these early
prototypes.

We created two fixes for the common error Cannot find name, which occurs
for undeclared variables. We identify that the cause of the error is either a
missing ‘require’ for a package, or a variable not being defined. Our two fixes
thus are to insert the import or define a placeholder variable. We leverage
the TypeScript compiler’s ability to generate ASTs for even erroneous code to
provide information about the context and surrounding code, and to keep track
of errors that exist on the same line as each other. We ignore cases of the Cannot
find name error where it may be reported for non-code (for example, terminal
commands): in cases of expression expected and unexpected keyword or
identifier we presume that the code on that line has additional issues, and
we make no changes.

For missing require statements, we check if the identifier could be an API
usage, and then check if the name matches to a built-in library. For these cases,
we insert a require statement. Undefined functions are ignored to allow Type-
Script’s codefixes to handle these cases instead. In other, non-function, cases,
we attempt to get the expected type of the undeclared variable. That is: if the
identifier is an argument of a function, we check for the expected type from the

4.3. Approach 77

parent function. From here, we can insert a placeholder string, number or array
of strings or numbers. Where a type cannot be determined, we default to a
string. Additionally, for more complex types, we default to a placeholder string
with a comment noting the suggested type. These placeholders serve to move
the snippet to a more ‘correct’ state, while indicating where developer inter-
vention may be needed. The motivating example in Section 4.2 demonstrates a
case in which both of these fixes are applied. After applying a fix, we compile to
see if the changes do not increase the total number of errors; if not, the change
is kept.

4.3.3 TypeScript Codefixes

We employ TypeScript’s codefixes (the Quick Fix suggestions that TypeScript
can provide to an IDE, for example, when integrated with VSCode) to automat-
ically correct errors. TypeScript codefixes require use of the LanguageService
API, not the compiler, but, similarly to the TypeScript compiler, we speed up
runs via in-memory objects and caching. Sharing a DocumentRegistry object
between runs, and only updating the input ‘file’ for each snippet, gives consid-
erable speed benefits. TypeScript supports fixes for 1,190 of its 1,878 available
error types.

We adapt the codefix procedure of the Microsoft ts-fix tool (Microsoft,
2023a), which automatically fixes errors in TypeScript projects. For each error,
a set of CodeFixActions is supplied if they exist, each with its own set of
changes that must be made to the text. All possible changes are combined into
a list, sorted by the earliest start and then the smallest change. Then, we filter
the list to remove changes that would overlap (i.e., affect the same part of the
string), before applying them to the text. Then we compile the code again to
update the error count.

4.3.4 Line Deletion

Line deletion is a commonly used technique to reduce errors in code snippets (Le
Goues, Weimer, and Forrest, 2012; Harrand et al., 2019; Licorish and Wagner,
2022b; Licorish and Wagner, 2022a; Petke et al., 2019; Ginelli et al., 2022;
Reid et al., 2023b). We adapt the NCQ line deletion algorithm to work with
the TypeScript compiler. The deletion algorithm functions as illustrated in
Algorithm 1, and is run on snippets that still have errors after the codefix
stage. The algorithm attempts to find the ‘best’ snippet based on error count,
by deleting lines affected by errors. The ‘deletion’ occurs by commenting out the
line, just like in NCQ; in a code reuse situation these erroneous lines may still
be useful to a developer by providing additional context, and commented out
code can aid developers in fixing bugs, debugging and adding features (Pham
and Yang, 2020). We prefer line deletion over statement deletion for the issue
of code fragments, as not all snippets are parsable.

First, the snippet S is compiled to find errors. If there are no errors, the
process stops there. If there are errors, the algorithm starts with the first error
and attempts to delete the associated line. The new snippet is then re-evaluated,

78 Chapter 4. Correcting Code Examples

Algorithm 1: Line Deletion Algorithm
Sbest ← Initial snippet
// Step 1: Get errors
Sbest.errors← Compile(Sbest)
done← false
errorNo← 0
while done == false do

Scurrent ← Sbest

// Step 2a: Check if done
if errorNo >= Scurrent.errors.length then

done← true
// Step 2b: Try delete error
else

Scurrent.DeleteLineFor(errorNo)
Scurrent.errors← Compile(Scurrent)
// Step 4a: Keep deletion
if Scurrent.errors <= Sbest.Errors then

Sbest ← Scurrent

errorNo← 0

// Step 4b: Try next error
else

errorNo++

return Sbest

and if the error count did not increase, the deletion is kept and the errorNo
variable is reset as the error list is now changed. If the change made things
worse, we revert the change and move on to the next error. The loop ends when
there are no errors or all errors have been processed, and the algorithm returns
the snippet with the least errors it can produce. In some cases, snippets are
commented out completely (so-called ‘empty’ snippets) in order to reduce the
snippet to zero errors.

The major change from NCQ is that TypeScript reports more than a single
‘failed here’ parsing error, unlike ESLint. This means that NCC’s line deletion
algorithm is capable of trying multiple changes when one does not work. Fur-
thermore, because the mined dataset still contains some non-Node.js snippets
even after filtering, we handle additional edge cases not shown in the algorithm
based on the unexpected behaviour of the TypeScript compiler. We ignore the
previously discussed 230 crashing or timed out snippets. Additionally, it is pos-
sible for an error to persist even on a commented-out line, so we check if the line
has been commented out and skip it. In cases where the reported error location
exceeds the actual snippet length, which we interpret as a problem parsing the
snippet, we terminate the line deletion process.

4.4. Dataset 79

4.4 Dataset

This section provides an overview of the dataset used to evaluate the perfor-
mance of the code correction tool. The dataset consists of two main sources:
NPM snippets and Stack Overflow edits, each described in detail in their re-
spective subsections. ‘Snippet’ in both instances refers to code fragments mined
directly from either markdown or HTML, by looking for code blocks. We do not
attempt any combination of related snippets in a single source, as developers
and tools often treat snippets as self-contained, even when that may not be
true.

4.4.1 NPM Snippets

Reid et al. (2023b) originally ran NCQ’s code corrections over a dataset of
2,161,911 code snippets mined from the NPM registry as of May 2021. The
dataset contains snippets extracted from markdown code blocks in the package
READMEs. Heuristics were employed to ensure the dataset was filtered for only
Node.js snippets, manually verified on a sample of 384 READMEs (confidence
level 95%, confidence interval 5). However, non-JavaScript code snippets (in-
cluding terminal commands, TypeScript and JSX, a JavaScript extension used
for React) may still be present within the dataset.

For our evaluation, we use the same publicly available dataset for our eval-
uation. However, because NCQ is a Node.js REPL, it implements some REPL-
specific rules and fixes to make reusing code snippets in this environment easier.
Because of this, we rerun its correction on the dataset after disabling these rules
to better emulate the scenario described in Section 4.2 (a developer looking to
reuse code snippets in a regular Node.js programming environment) and report
errors before and after fixes.

4.4.2 Stack Overflow Edits

In order to compare NCC’s performance to how developers manually edit code,
we evaluate on a set of Stack Overflow snippets, for which we have the first
and most recent edit. We used the December 2020 version of the SOTorrent
dataset (Baltes et al., 2018; Baltes and Wagner, 2020), retrieving the code-only
PostBlockVersions for all accepted answers of posts tagged ‘Node.js’, giving us
a total of 299,389 snippet versions, or ‘edits’, across 182,205 snippets. For our
SOEdits dataset, we look only at snippets where there are at least two versions,
there was some change between the first and last version, and the first version
has at least one error, creating a dataset of 21,431 snippet ‘before’ and ‘after’
edit pairs. These pairs represent an original erroneous snippet, and the current,
edited snippet on SO.

By running the TypeScript compiler, we observe that this set of snippet
pairs does not necessarily represent an improvement over time; overall, the
number of errors increased between edit pairs, as did the number of lines of
code. For 74.51% of SO edit pairs (15,969 pairs), there was an improvement in
errors between edits, and for only 5.12% of edits (1,099 pairs), all errors were

80 Chapter 4. Correcting Code Examples

Table 4.1. Summary of SOEdits dataset.

All snippets 182,205
All versions 299,389

All SOEdit pairs 21,431
Improvement only 15,969
Fixed only 1,099

corrected. For this reason, we further filter the dataset to the 15,969 snippets
that show improvement and create an additional subset for the 1,099 snippets
that were ‘fixed’. Table 4.1 shows the breakdown of the data.

4.5 Evaluation

We run both NCQ and NCC’s corrections on a dataset of 2,161,911 code snip-
pets from NPM package documentation (described in Section 4.4.1) and record
results at each stage. To establish baseline data of what errors ESLint and
TypeScript can identify, we also run only the error reporting. Experiments
were run with the latest LTS version of Node.js as of April 2023 (18.16.0), ver-
sion 4.9.4 of TypeScript and version 8.31.0 of ESLint. We make the assumption
that developers looking for code online expect it to be up-to-date and compati-
ble with the recommended version of Node.js. We configure the error reporters
in NCQ and NCC (ESLint and TypeScript) comparatively to emulate the sce-
nario described in Section 4.2; a code snippet pasted into an empty file, in an
otherwise empty Node.js project, with no packages installed. Additionally, our
error reporters are configured for CommonJS, or ‘script’ mode, where require
statements are used to import packages and top-level await is not allowed. Be-
cause NCQ’s corrections were designed for its REPL context, REPL-specific
rules and fixes were disabled so as not to impact results. Although the dataset
may still contain non-Node.js code snippets despite filtering, such as TypeScript
and JSX, we limit the evaluation to Node.js; where TS and ESLint have op-
tions to process this code without errors, we do not enable them. We ask the
following research questions:

RQ1. What errors does TypeScript detect in NPM documentation?
RQ2. How does error detection differ between ESLint and TypeScript?
RQ3. What is the impact of NCC on the set of NPM snippets?
RQ4. How does NCC compare to NCQ’s code corrections?

Furthermore, to evaluate the NCC results against the way developers man-
ually fix errors, we compare the results with the set of improvements in the
SOEdits dataset, described in Section 4.4.2. We ask the following research
question:

RQ5. How does NCC compare to manual fixes?

4.5. Evaluation 81

4.5.1 What errors does TypeScript detect in NPM docu-
mentation?

We ask this question to characterise the frequency and types of errors in NPM
package documentation and also to establish a baseline to compare our correc-
tions. We ran the TypeScript compiler on all 2,161,911 code snippets and found
that only 569,201 code snippets (26.3%) had no errors. TypeScript identified
a total of 14,707,149 errors in the set, an average of 6.8 errors per snippet.
Looking at only erroneous snippets, the average number increases to 9.2.

Figure 4.5. Most common error types in NPM documentation,
reported by TS.

TypeScript reports 404 different error types on our dataset. Almost half of
the 14.7 million errors TypeScript detects are for the error type cannot find
name, with 7.2 million occurrences; this is visible in Figure 4.5. This error
reports cases where an identifier was referenced without a declaration. There
is a similar, but separately numbered, error that suggests an alternative name,
where a misspelling is suspected, accounting for another 198,413 errors. The
second most common error type, character expected, accounts for 1.6 million
errors. With the exception of the JSX error which appeared in 154,737 code
snippets (7.16%), common errors can be characterised as missing or unexpected
characters, keywords, identifiers, statements, or expressions. Error messages
typically provide the error-causing token or the expected token. TypeScript is
also able to detect when functions do not exist on a type; the Property does
not exist on type error is the 12th most common with 83,483 occurrences.

Figure 4.6 shows a common situation in NPM package documentation. These
two code snippets from the README for the prompt package demonstrate two
ways to get input from a user on the command-line using a prompt; using a
callback or using await. However, the second code snippet would generate
a cannot find name error when evaluated by the TypeScript compiler. The
variable prompt is undeclared in the second snippet, but not in the first.

Code snippets are often not intended to be working examples but rather
to demonstrate functionality; they often omit code that would be repeated

82 Chapter 4. Correcting Code Examples

1 var prompt = require(’prompt ’);
2

3 prompt.start();
4 prompt.get([’username ’, ’email ’], function (err , result)

{
5 console.log(’Command -line input received:’)
6 console.log(’ username: ’ + result.username)
7 console.log(’ email: ’ + result.email)});

1 const {username , email} = await prompt.get([’username ’, ’email ’]);

Figure 4.6. Two code snippets from the package prompt.

between code snippets, such as the require statement in Figure 4.6. However,
developers and automated tools still use them this way. The number of cannot
find name errors in the dataset suggests that missing variables are common
and that this practice is widespread.

Summary: The majority (73.7%) of code snippets in NPM package
documentation have some kind of error. On average, the snippets have
6.8 errors. The most common error was for undeclared variables.

4.5.2 How does error detection differ between ESLint and
TypeScript?

To compare the two error reporters, we ran ESLint on the same snippets. We
use a modified version of the configuration from NCQ, with the REPL specific
errors disabled. We disable ‘linting’ rules concerning formatting and only look
at errors that would affect code functionality.

Figure 4.7. The 10 most common error types via ESLint.

ESlint reports a similar rate of erroneous snippets, with only 26.3% of snip-
pets having no errors. However, we observe that the average number of errors

4.5. Evaluation 83

per snippet sits at 1.26 errors (and 1.71 errors for the erroneous set). In fact,
ESLint reports only a fraction (18.5%) of the errors that TypeScript can on the
same set. This is because of the 2,722,241 errors reported, 27.8% are parsing
errors.

ESLint reports 185 different error types, of which 175 of the types (94.6%)
are parsing errors. Figure 4.7 reflects this, where all but the most common
error reported by ESLint (no-undef at 2m occurrences) are parsing errors, such
as unexpected tokens (575,440 occurrences) and use of await outside of an async
function (only allowed in ES modules), at 59,221 instances. The prevalence of
parsing errors is an issue for two reasons. First, ESLint reports only a single
parsing error per snippet indicating why parsing failed, thus these snippets do
not generate an AST, nor can ESLint run its rule detection or fixes. This means
for 47.46% of snippets with errors, we are only able to detect a single, unfixable
error. Secondly, ESLint rule detection besides from ‘no-undef’ accounts for only
2,211 errors. TypeScript’s ‘unexpected token’ error, for example, occurs for only
60,885 occurrences; instead, TypeScript has an increase in other more specific
error types that might provide more useful information on the cause of the error.
The types of errors ESLint can report are limited due it’s intended purpose as
a linter ; further lowing the error rate, the majority of rules are not enabled
by NCQ as they are not useful for identifying erroneous code. In this context
Thus, the error information is incomplete, and ESLint may not necessarily be
useful for evaluating runnability or informing fixes.

Summary: ESLint reports considerably fewer errors than the Type-
Script compiler – an average of 1.3 vs. 6.8 per snippet. 47.46% of
erroneous snippets have a single error where parsing failed, resulting
in an average of 1.71 errors per erroneous snippet compared to Type-
Script’s 9.2. In these cases, it also cannot generate an AST to enable
fixes. These results indicate that ESLint is limited in what it can tell
us about code.

4.5.3 What is the impact of NCC on the set of NPM
snippets?

First, we look at the impact of only the TypeScript codefixes on the set of
snippets. After applying the codefixes, the number of snippets without errors
increased from 569,201 (26.3%) to 648,814 (30.0%). The total number of er-
rors was reduced from 14,707,149 to 14,096,112 (a decrease of 4.2%). In total,
602,629 snippets (27.9%) had changes made to fix errors.

Figure 4.8 illustrates the most common error types after codefixes and shows
significant changes. All 10 of the most common errors in Figure 4.5 had fixes,
however, not all fixes can be applied to every error, and some fixes can intro-
duce new errors. The most common error is still Cannot find name, but it
has reduced from 7.2 million to 6.3 million occurrences. The error type Cannot
find name (suggestion) no longer appears in the most common errors, re-
ducing from 198,313 occurrences to just 25,979. As discussed in Section 4.5.1,

84 Chapter 4. Correcting Code Examples

Figure 4.8. The 10 most common error types after TS code-
fixes. Light Grey represents a decrease in errors from previous
results in Figure 4.5, where light green represents an increase.

this error type directly relates to its suggested fix, so the reduction is logical
here. However, the error type Property doesn’t exist on type increased by
142,016 occurrences. Expression expected also visibly increased. The other
errors have minor increases/decreases that are not visible on this scale. The in-
crease in error Property doesn’t exist on type probably results from fixes
for undefined variables, where a variable is defined that does not make sense on
the basis of usage.

Next, we consider the impact of line deletion in combination with TS code-
fixes. We find that the number of snippets without errors increased from the
original 569,201 (26.3%) to 1,622,272 (75.0%), an increase of 185.0%. The to-
tal number of errors that could not be fixed also decreased from the original
14,707,149 to 925,277. The average number of errors per snippet decreased to
0.43. In total, 1,343,992 snippets (62.2% of the total) had changes made to
reduce errors.

The line deletion stage accounts for a 150.0% improvement, or additional
973,458 error-free snippets, from the TypeScript codefix stage. However, it
also comments out all lines for 483,169 code snippets (22.3% of the total set
and 49.6% of snippets it makes error-free). To measure the impact of the line
deletion algorithm, we counted the number of lines before and after deletion.
In total, 4,031,366 lines of code were commented out, 22.1% of the total lines
of code. Combined with the lines added from TypeScript codefixes, there are
2,902,083 fewer lines after NCC’s corrections. However, deleted lines are only
commented out, so they can still be useful to developers by providing additional
context and guiding them with what to do next.

The types of errors that were reported changed considerably between code-
fixes and deletion, as seen in Figure 4.9. The original 7.2 million instances of
cannot find name were again reduced to 446,972 instances. New errors now
populate the top 10: cannot find name (it) where a testing library using

4.5. Evaluation 85

Figure 4.9. The 10 most common error types after deletion and
TS codefixes. Shading represents improvement over Figure 4.8.

the function it() was not installed, Type annotations for the use of Type-
Script, and Top level await. All common errors saw reductions from their
previous values, except Return outside function, which increased by 7,728
occurrences after line deletion.

1 + var s = "YOUR VALUE HERE";
2 var words = s.split(" ");

Figure 4.10. Example of undeclared variable with no fix, and
a proposed fix.

Based on these results, we implement a limited suite of targeted fixes for
the most common error that still persists: cannot find name. We conjecture
that the ability to define variables will enable NCC to reduce the number of line
deletions, and thus empty snippets. Despite the error type Cannot find name
having TS codefixes in some cases, seemingly ‘simple’ cases such as the example
in Figure 4.10 cannot be fixed. On the basis of these cases, we introduce custom
fixes.

We run all fixes on the dataset and observe that the number of snippets with
no errors decreases slightly by 1,929 (a decrease from 75.0% to 74.94%). How-
ever, this does not tell the entire story: the total number of errors fell by 2.76%
to 899,774, and the number of empty snippets fell considerably from 22.35% of
the dataset to 7.41%. Figure 4.11 shows how some errors increase but that there
is a considerable decrease in Cannot find name. We see an increase in the error
property doesn’t exist on type, likely due to the addition of placeholder
definitions which default to strings in many cases. Similarly, the increasing
error expression not constructable also handles a similar case, where the
previously undefined identifier should instead be a constructable object.

86 Chapter 4. Correcting Code Examples

Figure 4.11. The 10 most common error types after all fixes.
Shading represents prior results from Figure 4.9.

Summary: NCC improves the number of error-free snippets by
184.67%, and most of the remaining erroneous snippets have some
changes to reduce errors. However, 7.41% of the snippets are entirely
commented out by the corrections. The results indicate that leveraging
TypeScript enables NCC’s custom fixes to decrease errors, but that ad-
ditional heuristic fixes could further reduce the reliance on ‘last resort’
line deletion.

4.5.4 How does NCC compare to NCQ’s code corrections?

We ask this question to investigate whether the use of a compiler like TypeScript
instead of a linter can improve error-informed code corrections. NCQ’s code cor-
rection approach consists of three components: evaluating errors using ESLint,
fixing errors using ESLint’s built-in fixes, and the line deletion algorithm which
runs on parsing errors. We record errors before and after all correction steps.

With all fixes, we find that NCQ’s corrections are able to increase the num-
ber of snippets without errors from 569,419 to 982,832 (45.46% of total code
snippets), an increase of 413,413 code snippets (72.6%). Furthermore, the total
number of reported errors (that could not be fixed) actually increases by 34,502,
as the correction of parsing errors enable more ESLint rule violations to be de-
tected. In line with this, the average errors per erroneous snippet increased to
2.34. 113,621 of the 413,413 snippets made error-free (27.48%) had all lines
commented out, and the line deletion algorithm removed 3,461,047 lines (20.2%
of all lines).

Figure 4.12 shows the most common errors after fixes. Errors reduced for
parsing errors as expected, with unexpected tokens now at 123,695 occur-
rences. Now that so many parsing errors have been corrected with the dele-
tion algorithm, other errors appear in the top 10. We see that no-undef saw
an increase to 2,626,174 occurrences, as NCQ employs no fixes for this error,

4.5. Evaluation 87

Figure 4.12. The 10 most common error types via ESLint after
NCQ’s corrections. Shading represents the initial values before

fixes (see Figure 4.7).

and other non-parsing errors are now visible such as no-const-assign. We
note from our results that ESLint’s built-in fixes have very little impact on the
dataset: after the ESLint fix stage, errors only reduced by 2 and a single snip-
pet was made error-free. ESLint’s fixes mostly solve formatting issues and only
work on parsable snippets, so this is expected. We compare these results with
NCC’s use of TypeScript codefixes, which corrected all errors in 79,613 snippets
and resulted in a 611,037 error reduction.

It is difficult to compare the impact of each approach on the quality of code
snippets; we do not attempt to run snippets after fixes to see if there is an im-
provement in runnability, and neither evaluator can give us a ‘correct’ number
of errors. We also cannot compare the exact number of errors between ap-
proaches, as each evaluator reports errors differently. However, we can see that
NCQ results in more empty snippets as part of its corrections, and that it does
not correct as many snippets. Because most erroneous snippets with ESLint
have a single parsing error, this means that if a line deletion does not improve
the code snippet, there are no alternatives to try. Empty snippets and number
of deleted lines also reduced between approaches: 14.29% of corrected snip-
pets were empty for NCC (7.41% of the dataset), compared to NCQ’s 27.48%
(14.33%). This suggests that the use of TypeScript enables more accurate line
deletion and that additional fixes reduce the reliance on deletion.

Summary: Compared to NCQ’s code corrections, we find that NCC
has a higher improvement rate and that NCC leaves fewer snippets
empty (7.41% vs 14.33%). We find that ESLint’s automated fixes im-
plemented in NCQ had little effect on improving code snippets, only
fixing 1 snippet.

88 Chapter 4. Correcting Code Examples

4.5.5 How does NCC compare to manual fixes?

Figure 4.13. The 10 most common errors for Stack Overflow
Edits pre-edit.

To compare NCC to manual fixes, we evaluate against Stack Overflow snip-
pet pairs, for which we have an original snippet containing at least one error
(the ‘pre-edit’ snippet), and the most recent with reduced errors (the ‘post-edit’
snippet). We look at both the total ‘improvement’ set, and the 1,099 subset
where all errors were fixed. Though we do not expect our limited suite of fixes
to correct all 1,099 snippets, the aim of the comparison is to see how well NCC
performs despite this.

Figure 4.14. The 10 most common error types for Stack Over-
flow Edits post-edit. Grey represents the change between edits.

First, we observe the error landscape of the pre-edit ‘improvement’ set. The
TypeScript compiler reports a total of 160,602 errors in the dataset: an average
of 10.06 errors per snippet. This set of snippets only contains erroneous snip-
pets, so all snippets have at least one error. Figure 4.13 shows the most common

4.5. Evaluation 89

error types before editing, with the most common error remaining ‘cannot find
name’ like in the previous results. Again, Stack Overflow snippets often miss
elements that might exist in other snippets or in the question.

Next, we observe the reduction in errors after manual fixes, represented in
the ‘post-edit’ set. We see a 17.60% reduction in total errors and 6.88% of the
snippets have all errors corrected. Figure 4.14 shows the change in error types,
which can be summarised as a general reduction in all common error types.

Figure 4.15. The most common errors for Stack Overflow snip-
pets after NCC.

When we run NCC over the original snippets, we observe that our suite of
fixes enables a 90.69% decrease in errors. 7,469 snippets are made error-free:
an additional 6,370 snippets over the post-manual-edit set, representing 46.77%
of the dataset. This result is achieved with a 5.71% rate of empty (‘commented
out’) snippets, compared to only 3 (0.27%) for manual edits. Figure 4.15 shows
how the error landscape changes: The occurrences of cannot find name, pre-
viously the most common error, reduce to only 1,281 occurrences. Again, we
see similar errors increase as in Section 4.5.3. However, we check for an increase
in errors after making changes to ensure that the change does not make the
code worse, and the value is intended to be modified by developers with their
own value.

For the subset of 1,099 snippets that were manually fixed in their post-edit
version, NCC is able to fix 726, 66.06% of the set. 47 (4.28%) of the snippets
are entirely commented out by NCC’s fixes.

Summary: NCC can resolve all errors for 46.77% of SO snippets, re-
ducing errors by 90.69% with a rate of 5.71% empty snippets. Evaluated
against snippets with manual corrections, NCC can fix 66.06% of these
snippets, which is a promising result.

90 Chapter 4. Correcting Code Examples

4.6 Threats and Limitations

There are several potential threats to the validity of this study. Firstly, our
results on quality and correctness of the code snippets are based on reported
errors from both TypeScript and ESLint, but neither of these tools can ac-
curately represent the runnability of the code. Furthermore, we did not try
to install each package within our dataset, but because TypeScript can gather
type information and use it to report errors, this could have provided additional
error information. We assume that the inability to parse or compile a snippet
relates to its quality and runnability, which is true for compilable languages like
Java but may not necessarily hold for Node.js. Similarly, because we do not run
code snippets, either before or after fixes, we cannot know the impact of fixes
on runnability. Our fixes for Stack Overflow snippets may report fewer errors,
but our automatic fixes may not be similar to the kinds of fixes that developers
produce manually. Additionally, removing lines may reduce errors at the cost
of expected behaviour. Because we focus on lines, and not statements, errors
over multiple lines may not easily be addressed by our algorithm.

Snippets were mined devoid of context, in order to replicate developer copy-
paste and code recommender systems like NCQ, but this method may account
for some of the missing variable errors. Additionally, while care was taken to
limit the mined datasets to only Node.js code, as described in Section 4.4, non-
code still exists in the dataset and may impact results. Finally, the results of
our evaluation are specific to Node.js and the version used, and we cannot claim
that they generalise to other languages, or even versions of Node.js.

Additionally, there are limitations to our approach. NCC simply re-implements
ts-fix’s batch approach to applying TypeScript’s fixes, which does not vali-
date each fix individually. Like the line deletion algorithm and heuristic fixes,
each change could be checked via the compiler to ensure that no fix makes a
snippet worse. Furthermore, heuristic fixes can always be further refined to
handle more situations. We acknowledge the limitations of such fixes, in that
they must be individually designed for each error case and make guesses about
missing parts of code. We look with interest at Large Language Models (LLMs)
like OpenAI’s Codex and ChatGPT that might provide new AI solutions for
this problem. GitHub’s Copilot plug-in already generates snippets in the editor
for a given task and code context and could change code reuse practices. How-
ever, there are concerns about the quality of generated code. Future work may
investigate how a similar system can be applied to existing code snippets.

4.7 Conclusion and Future Work

Developers often rely on code snippets found online for reference and assistance
in their projects. However, most of these snippets are not runnable, requiring
developers to spend additional time fixing errors, which can be especially chal-
lenging when using third-party libraries. Existing approaches to automatically
identify and fix errors in snippets have primarily focused on static analysis using
parsers and linters, as snippets often lack test cases or do not run. Although

4.7. Conclusion and Future Work 91

these techniques have proven useful in some cases, there is still a need for a
better way to evaluate and correct errors in Node.js code. Our work aims to
address this gap by using the TypeScript compiler for more effective and accu-
rate code correction compared to a linter like ESLint, which on average reports
only one error per snippet.

Our results indicate that the TypeScript compiler enables more effective
and accurate code identification and correction when compared to ESLint. The
TypeScript compiler is also capable of detecting more errors and more informa-
tive errors, and its built-in fixes affect more snippets. Additionally, the reported
error information and ASTs generated by the TypeScript compiler enable the
use of additional heuristic fixes on more snippets. Based on these results, we
suggest the use of the TypeScript compiler for static analysis on Node.js datasets
over linters, and the NCC approach for automating code reuse.

Future work could integrate NCC within a code recommendation system or
as an IDE plug-in, to find, insert and then correct code snippets from online,
similar to NCQ. Additionally, we could study how useful developers find the
fixes generated by NCC, either by asking them questions about the changes or
having them use the tool in a code reuse scenario. It may also be interesting to
investigate how accurately TypeScript errors correlate with runnability, when
trying to run code snippets, and how well NCC makes the snippets runnable.

Acknowledgement

Brittany’s research was supported by an Australian Government Research Train-
ing Program (RTP) Scholarship.

93

Chapter 5

Generating Code Examples

Related Publication: This chapter is based on our paper: Brittany Reid,
Earl Barr, Markus Wagner, and Christoph Treude (2023a). Copy-Paste vs.
Code Generation: Contrasting Stack Overflow and GitHub Copilot. Being
revised for submission to IEEE Transactions on Software Engineering (Reid
et al., 2023a).

Large language models, such as Copilot and ChatGPT, are transforming
software development by offering alternatives to reuse via online code snippets.
Where developers currently copy-paste code examples from online resources like
Stack Overflow, tutorials and documentation, that they have to then spend time
integrating, they may one day simply generate snippets for their specific situa-
tion. To best choose between these code completion approaches, it is essential
to understand their strengths and weaknesses. In this study, we systematically
compare snippets generated by Copilot and those sourced from Stack Overflow
along two dimensions: output quality and user interface. Our findings indicate
that Copilot generates at least one snippet per query more frequently than Stack
Overflow, but its output is less diverse and prone to hallucinations. Addition-
ally, Copilot snippets tend to contain fewer API calls and exhibit fewer syntax
errors compared to Stack Overflow snippets. The effects of query variations,
including reducing queries to keywords or incorporating method signatures, dif-
fer significantly between the two approaches. These results provide insights
into the trade-offs and help software professionals better navigate the rapidly
evolving landscape of source code reuse.

94 Chapter 5. Generating Code Examples

5.1 Introduction

Large language models, such as the ones powering GitHub Copilot and Chat-
GPT, are transforming software development (Lawrence, 2022) and have the
potential to replace copy-paste from sources like Stack Overflow as the primary
mechanism for code reuse. Over a decade ago, the social media revolution in
software engineering (Storey et al., 2010) led to the emergence of platforms
like Stack Overflow1, which centralized copy-paste reuse activity and replaced
regular expressions over code with natural language queries and answers that
combined code and text. Now, Copilot, ChatGPT, and others are changing this
approach once again.

These large language models have the potential to revolutionize the software
development process, offering a more sophisticated and efficient way to access
relevant code and programming knowledge. This shift effectively reduces the
need for manual copy-pasting from Stack Overflow and similar sources. As these
models continue to evolve and improve, they may become indispensable tools
for developers, ushering in a new era of efficient and intelligent programming
practices.

Both copy-paste from Stack Overflow and the use of Copilot and Chat-
GPT are based on a query-driven programming model, functioning as code
completion engines (CCEs). These can be divided into two types: social code
completion engines (SCEs), which involve snippet retrieval from crowd-sourced
platforms like Stack Overflow, and large language model-based code comple-
tion engines (LCEs), such as Copilot and ChatGPT. An SCE query typically
consists of natural language search terms (Liu et al., 2021; Cai et al., 2019),
while an LCE query is composed of three elements: a cursor (a highlighted code
location when the developer issues the query), a code context surrounding the
cursor, and a natural language query.

Ultimately, the output of LCEs will define their success. When the output
is excellent, developers will adapt their queries and workflows to take advantage
of LCEs. Most code is maintained far longer than its initial development, and,
to date, code generators have struggled to produce maintainable code (Fry,
Landau, and Weimer, 2012), which has hampered their adoption. Will this
issue also impact the adoption of code generated by LCEs like Copilot and
ChatGPT? Will LCE’s tendency to “hallucinate” (Ji et al., 2022) impede their
uptake? If the surge in adoption is any indication, early reports suggest it may
not (Lawrence, 2022).

To successfully navigate this machine programming wave, the software in-
dustry must understand the strengths and weaknesses of LCEs. Answering this
question requires clear-headed, empirically rigorous experimentation. In this
work, we systematically compare the code provided by LCEs to that available
via SCEs along two axes: output quality and user interface.

In terms of the output quality, we find that both CCEs return almost the
same number of completions on average: 6 snippets for Copilot vs. 6.6. for Stack
Overflow, after deduplicating Copilot’s completions. This average result masks
a difference: Copilot rarely fails to respond to a query, generating at least

1https://stackoverflow.com/

https://stackoverflow.com/

5.1. Introduction 95

one snippet in 99.81% of the cases, whereas Stack Overflow returns nothing
in 11.83% of the cases. Stated using averages, this finding understates the
difference in the two tool’s output. Copilot generates at least one snippet in
99.81% of cases, whereas Stack Overflow returns nothing in 11.83% of the cases.
Its snippets are longer on average and contain more duplicate lines. Thus,
Copilot rarely fails to respond to query, and yet, despite its loquaciousness,
its output is less diverse, on average. If we view completions as draws on a
lottery where a winning completion is one that matches a developer’s intent,
these observations suggest that Copilot’s completions are less likely to win as
Copilot appears likely to hallucinate some answers and cover less of a query’s
solution space.

We further find that Stack Overflow snippets contain more comments than
Copilot’s do: 30.43% vs. 7.88%. Copilot is less likely to include working API
calls than Stack Overflow: only 3.92% of its snippets contain import statements
vs. 18.90% of Stack Overflow’s. Copilot’s snippets are much less likely to contain
syntax errors than Stack Overflow’s: 10.46% vs. 31.43%, a finding that probably
understates the ease of using its completions relative to those of Stack Overflow,
as Copilot is aware of the local code and more likely to use its variable and
conventions. We manually assessed snippet relevance. Our finding here are
mixed: Copilot’s snippets are more likely to directly addressed the queried
problem than Stack Overflow’s: 59% to only 6%, but Stack Overflow’s are
more like to indirectly help: 17% vs. Copilot’s 9%. Here again, it appears that
Copilot is successfully leveraging its immediate awareness of the local context
of the completion. These results stand in contrast to the conventional wisdom
that Copilot’s answers are low quality and Stack Overflow’s attendant decision
to ban content generated by large language models from its site (Makyen, 2023).

In terms of user interface, both CCEs accept natural language queries, which
Copilot supplements with the code context surrounding the cursor when a de-
veloper requests a completion. It’s likely that both only use a subset of the
content of their queries. Guided this hypothesis, we converted their queries to
consist only of keywords. Operating on this stripped down queries, Copilot ac-
tually produces 55.75% more snippets and that these snippets are more diverse;
Stack Overflow returns 44.97% of the snippets it returned on the unmodified
query. Clearly, Copilot leverages code context; can Stack Overflow do the same?
When we included method signatures in the Stack Overflow queries, it returned
81.50% fewer snippets. In short, it currently does not. How it might do so is
an open question.

We use Stack Overflow combined with Google Search as our SCE and
GitHub Copilot as our LCE. Since OpenAI will discontinue support for their
Codex API2, we make our dataset of approximately 30,000 code snippets con-
taining almost 500,000 lines of code publicly available3. As technology advances
rapidly, continuously obtaining up-to-date empirical data is challenging, but it
is essential to attempt to understand current trends in order to effectively adapt
to and leverage these advancements for improved software development prac-
tices. This study aims to generally compare two competing completion models,

2https://news.ycombinator.com/item?id=35242069
3https://github.com/ctreude/stack-pilot

https://news.ycombinator.com/item?id=35242069
https://github.com/ctreude/stack-pilot

96 Chapter 5. Generating Code Examples

the earlier query-based copy and paste and the newer generative model, using
Stack Overflow and Codex as our exemplars. We have designed this study with
this goal in mind: to capture the intrinsic differences between these models, not
accidental differences due to our choice of exemplars.

5.2 Research Questions

We ask a series of research questions about the dataset, split into themes: Out-
put Quality and User Interface.

The following research questions concern the differences in output qual-
ity between Copilot and Stack Overflow. Existing work has identified quality
concerns with the output of both large language model-based code completion
engines and online code reuse (Al Madi, 2022; Wong, Kothig, and Lam, 2022;
Erhabor, 2022; Yang, Hussain, and Lopes, 2016; Meldrum et al., 2020), however,
there is a lack of comparison between the two. We attempt to characterize the
differences, in order to gain a better understanding of how AI generated code
differs from human-written code, and if it can adequately serve developers needs
for code snippets in its current form. We hypothesize that AI code generators
like Copilot will return output for all queries, but that due to this, the output
may not always be of value. To measure output quality, we look at the proper-
ties of the code, as well as how the number of returned snippets varies, and the
variation between snippets for the same query using Normalized Compression
Distance (NCD) (Yu, Lee, and Yu, 2021), which we introduce in more detail in
Section 5.4.2.

First, we investigate the differences between each CCE, asking:

RQ1.1 How many snippets does each CCE return?
RQ1.2 How do different snippets for the same query differ?

Next, we seek to uncover software engineering salient properties of the code
snippets, by looking at snippet length, comments, API usage and errors, asking:

RQ2.1 How do snippets differ in length?
RQ2.2 To what extent do snippets returned by the approaches contain nat-
ural language explanations?
RQ2.3 How does machine-generated code differ from human-written code in
terms of API usage?
RQ2.4 What errors do the snippets have?
RQ2.5 How relevant are snippets?
The following research questions relate to the user interface, i.e., the way

that users interact with the CCEs. Currently, developers interact with code
search systems using natural language queries, which we observe the results
of in the preceding section. However, underlying both systems is keywords for
traditional web search and the code context for Copilot, where queries are simply
embedded as comments. We hypothesize that changing the type of input will
impact results. Additionally, we expect that Copilot will perform better than
Stack Overflow at understanding code. Similarly, if Large Language Models

5.3. Dataset 97

are meant to handle code and natural language, they may perform worse with
keywords. We modify our set of queries and observe the differences in output:

RQ3.1 How sensitive are the approaches to the use of complete sentences vs
keywords for queries?
RQ3.2 How sensitive are the approaches to inclusion vs exclusion of method
signatures?

5.3 Dataset

Table 5.1. Overview of queries. † Unlike the other sources,
soSearches uses distinct queries for Java and Python.

Source Queries

humanEval 324
leetcode 768
leetcodeTitles 768
soSearches 384†

We compile a set of natural language queries for both Python and Java from
multiple sources: popular search queries from Stack Overflow, programming
tasks from LeetCode4 and problems from HumanEval (Chen et al., 2021), an
evaluation set for code synthesis. In total, we mined 1,698 unique queries, a set
of 1,314 for each language. This gives us a combined set of 2,628 queries.

Table 5.1 illustrates the breakdown of queries by source. We define four
sources of queries: soSearches, humanEval, leetcode and leetcodeTitles. For
soSearches, we took 384 of the most popular Stack Overflow search queries
for both Java and Python, for a total of 768 queries. We sourced the 162
humanEval queries by taking the docstring description from the prompt of each
entry, and the 384 leetcode queries from a random sample of LeetCode problem
descriptions. We limited each of these to the first 32 words (the limit for Google
search queries). For leetcodeTitles, we instead used the problem titles for the
same set. The humanEval, leetcode and leetcodeTitles queries were not language
specific, so were used for both Java and Python sets.

Using this set of queries, we mined both Stack Overflow and Copilot for
snippets. We consider both sources of code snippets to be Code Completion
Engines (CCEs). Each CCE was given an input, a query, and returned output
in the form of code snippets. While Stack Overflow returns more than just
code, including natural language explanations, for the purposes of this com-
parison and for defining Stack Overflow as a CCE, we only make use of the
code snippets embedded within answers. Software Developers often copy-and-
paste code from Stack Overflow, and like Copilot, there exist similar extensions
that embed Stack Overflow snippets within the IDE (Ponzanelli, Bacchelli, and
Lanza, 2013; Campbell and Treude, 2017; Reid, Treude, and Wagner, 2020).

4https://leetcode.com/

https://leetcode.com/

98 Chapter 5. Generating Code Examples

Copilot generates snippets for a code context and cursor location, where
natural language queries are embedded within the code as comments. Figure 5.1
demonstrates how we provided a query as a comment above the beginning of
an incomplete function declaration in both languages, where we triggered the
Copilot extension at the end of the code to generate a completion of the function.
Copilot generates a maximum of 10 completions per query.

(a) Python input

1 # {query
}

2 def |

(b) Java input

1 // {query}
2 public class Clazz

{
3 public |

Figure 5.1. Python (a) and Java (b) input given to Copilot. A
vertical line (|) indicates cursor position when the extension was

evoked.

To programmatically mine our set of 2,628 queries, we created a VSCode
extension that inserts the input code into an empty file, sets the VSCode lan-
guage, calls the Copilot extension, waits 20 seconds for code to be generated,
then saves the output from the Copilot window. The 20-second timeout was
selected based on experimentation, as it takes differing amounts of time to gen-
erate all 10 results. Our extension is available on GitHub5

We mined Stack Overflow using Google to search for queries. This process
mimics how developers might search for code; using a general search engine to
direct them to answers. Using SerpApi6 to retrieve Google results, we performed
a site specific search for each query. For each page of Google results, we retrieved
a list of Stack Overflow question URLs. Then, we used the SO API to get only
the accepted answer for these questions. We consider the ‘code snippet’ to be
the first section of code in the text, by looking for the first <code> HTML
formatting. We continue retrieving Google results until we have 10 snippets
(matching Copilot’s default) or there were no results left. The order of snippets
thus reflects Google’s own ordering.

5.4 Results

5.4.1 RQ1.1: Number of Snippets Returned

The number of code snippets for each query is of interest due to the cognitive
load this places on developers. That is, developers may perform worse when

5https://github.com/Brittany-Reid/copilotmine
6https://serpapi.com/

https://github.com/Brittany-Reid/copilotmine
https://serpapi.com/

5.4. Results 99

presented with more choices that they need to evaluate (Cockburn, Gutwin,
and Greenberg, 2007). On the other hand, more choice provides alternative
solutions to a task. We are particularly interested in the number of results
returned per query, and cases where no results are returned. Due to the nature
of AI code generation, we expect Copilot to return results in all cases.

Table 5.2. Overview of the Dataset

Queries Snippets

SO CP

Java 1,314 7,897 7,843
Python 1,314 9,478 7,889

Total 2,628 17,375 15,732

In Section 5.3 we describe how we designed the dataset generation to be
comparable between CCEs, by attempting to generate 10 code snippets for each
query. Despite this, the number generated in total still differs between CCEs,
as can be seen in Table 5.2. This overview of the dataset reveals that contrary
to our assumptions, Copilot actually generates fewer snippets (an average of
6 snippets to Stack Overflow’s 6.6), and in total Stack Overflow returns 1.104
times the number of snippets as Copilot. The distributions of snippets per
query are shown in Figure 5.2. There are also an additional 10 cases (0.38% of
queries), not shown, where Copilot behaves unexpectedly and generated more
than 10 snippets (up to 14).

Figure 5.2. Distribution of number of snippets per query, for
each CCE. Not shown: 10 cases where Copilot generated more

than 10 snippets.

However, it is important to note that Copilot automatically filters duplicate
snippets from its results. Because Copilot reports the original number of results,
we can compare this to the returned results to calculate the number that were

100 Chapter 5. Generating Code Examples

filtered. We found that for 84.93% of queries, Copilot removed duplicates, for a
total of 9,642 duplicates removed (and without removal the total set would have
25,374 snippets, an average of 9.6 snippets per query). 2,325 queries (88.47%)
return 10 snippets. Additionally, when we checked the 17,375 Stack Overflow
code snippets, only 470 were duplicates of another snippet for the same query.
Thus, it is not fair to say that Copilot generates less code, but that it generates
less diverse code.

On occasion, queries return no snippets. This occurred 311 times in the
Stack Overflow set, but only 5 times in the Copilot set. There was no overlap
between the set of non-returning queries between CCEs. As described in Sec-
tion 5.3, we reran failed cases such as these to account for internet connectivity
issues during the mining process. Of the 5 Copilot queries, all lacked important
information for the solution (for example, the query “Minimum Limit of Balls
in a Bag”); however, other similar queries did generate results, so we do not
know why these cases fail.

Finding 1.1: Number of Snippets Returned
After deduplicating Copilot’s completions, both Stack Overflow and Copi-
lot return almost the same number of snippets per query on average: 6
snippets for Copilot vs. 6.6 for Stack Overflow. This average result masks
a difference: Copilot rarely fails to respond to a query, generating at least
one snippet in 99.81% of the cases, whereas Stack Overflow returns nothing
in 11.83% of the cases.

The finding that the average number of snippets returned overturned our
initial, subjective impression of using the two reuse techniques: that Copilot
offered many more suggestions. Perhaps our impression was due to the fact
that we found it easier to navigate Stack Overflow’s threaded results. Silence
can be golden, especially when the alternative is distracting. So, while we were
surprised to discover that Copilot and Stack Overflow generate roughly the
same number of snippets to consider, Copilot’s tendency to be overconfident
and hallucinate shows up here in long tail of shorter snippet lists.

5.4.2 RQ1.2: Snippet Diversity

We are interested in the diversity of snippets per query; that is, “When there is
more than one snippet, how different are the options given?”. The raw number
of snippets may not necessarily be a benefit; additional options are only useful
if they are different enough. For example, if the first snippet for a query fails to
solve the task, there is a possibility the next might be an option. We conjecture
that there will be more variation between snippets in code written by humans;
in contrast, we hypothesize that Copilot will generate more similar responses
per query; already we observe that its built-in duplicate remover triggers on
84.93% of queries.

We measure similarity of snippets for the same query using Normalized Com-
pression Distance (NCD), which measures the similarity between two objects,
based on the difficulty to compress the two objects combined compared to on
their own. We use LZMA to compress our snippet strings, because it satisfies

5.4. Results 101

normality properties better than other compression algorithms (Morgan, 2015;
Cilibrasi and Vitányi, 2005). For all pairs of snippets (x, y) in a single query,
we calculate the NCD of each pair as min(NCD(x, y), NCD(y, x)), as this is a
closer approximation of the true NCD (Yu, Lee, and Yu, 2021).

Figure 5.3. Distribution of NCDs for each CCE and language.

Figure 5.3 shows the distributions of NCDs for each language and CCE,
where a higher NCD indicates less similarity between two snippets from the
same query. For the Stack Overflow Python set, the mean and median NCDs
were 0.660 and 0.667; for Java these were 0.674 and 0.684. For Copilot, Python
values were 0.376 and 0.373; for Java 0.344 and 0.333. In general, the average
NCD between same-query snippet pairs was higher for Stack Overflow than
Copilot, indicating more diversity in answers. The maximum NCD in the sets
were (Stack Overflow Python) 0.981, (Stack Overflow Java) 0.984, (Copilot
Python) 0.875 and (Copilot Java) 0.867, while the minimums were 0 for Stack
Overflow and 0.015 (Python) and 0.014 (Java) for Copilot. The lack of 0 NCD
in the Copilot set reflects the pre-filtering. These values indicate that the range
of diversity is larger in the Stack Overflow set. For each language, Cohen’s d
characterizes the differences between the two CCEs as ‘huge’.

Finding 1.2: Snippet Diversity
Using NCD, we find that Stack Overflow snippets are more diverse per
query for both languages. Average NCDs for Java snippets were 0.674 and
0.334 for Stack Overflow and Copilot respectively.

These findings indicate that on a per-query basis, returned snippets have
more diversity from Stack Overflow than from Copilot. That is, our assumption
that Copilot’s generated snippets are more similar to each other is confirmed.
Alternative snippets may be less likely to be of use in Copilot; in situations
where developers would be looking beyond the first snippet finding only similar
snippets may be less than useful. Contrastingly, Stack Overflow is likely to
suggest a more diverse range of snippets that could be of more help.

102 Chapter 5. Generating Code Examples

5.4.3 RQ2.1: Snippet Length

Length is an important characteristic of code; the longer the code, the more er-
rors it is likely to have (Lipow, 1982). Additionally, developers may be able to
comprehend shorter code snippets faster than more verbose ones. This question
is also useful for characterizing the type of code that each CCE outputs. We cal-
culate lines of code (LOC) for each snippet by simply counting non-empty lines.
The disadvantage of this method is that it includes comments, and statements
split across multiple lines. The advantage is that because the dataset includes
erroneous snippets (which we discuss in Section 5.4.6), the count is consistent
regardless of parsing errors; when using tree-sitter to count statements, some
snippets report as empty.

Table 5.3. Lines of code per CCE and Language

SO CP Total

Total 199,086 275,770 474,856

Java 108,752 146,233 254,985
Python 90,334 129,537 219,871

Table 5.3 shows the total LOC in our dataset by CCE and Language. In
total, the dataset consists of 474,856 lines of code. We observe that Copilot
generates 38.52% more lines for the same set of queries than Stack Overflow.
The mean code snippet length was 11.46 lines for Stack Overflow, and 17.53 for
Copilot. All snippets consist of at least one line, with a maximum length of 496
lines for Stack Overflow and 138 lines for Copilot. Java snippets were longer
on average than Python for both CCEs, but Copilot snippets being longer on
average remained consistent between languages (18.65 lines vs 13.77 for Java,
16.42 vs 9.53 for Python).

1 def count_numbers_with_unique_digits(n):
2 if n == 0:
3 return 1
...

18 if n == 8:
19 return 3579139
20 if n == 9:
21 return 14893690

...
79 if n == 8:
80 return 2613122
81 if n == 9:
82 return 7657651

...

Figure 5.4. Truncated version of the largest Copilot snippet,
demonstrating repetition in Copilot set.

Upon analysis of the largest snippets, we saw that the longest Stack Overflow
snippet was an entire program implementing a representation of Fractions (Kip,

5.4. Results 103

2009), while the Copilot snippet was a nonsensical repetition of statements. A
snippet of this code, for the query ‘Count Numbers with Unique Digits’, is
shown in Figure 5.4. Other snippets for this query in python followed a similar
pattern. Throughout the Copilot dataset, we notice this type of duplication of
statements. This may account for the higher line count on average.

To see the extent of this code repetition, we count the number of duplicate
lines per snippets in each set. We expect a level of repetition within code
snippets; for example, the most repeated line in the Stack Overflow set was
‘}’, a closing bracket used in Java. However, for the Copilot set, the most
common repeated line was ‘public’. Upon closer look, we saw that the affected
code snippet was a series of 59 strings being declared with the ‘public’ on
a separate line. On average, Copilot snippets contained 5.35 repeating lines,
compared to Stack Overflow’s 1.95. 27.75% of Stack Overflow code snippets
contained repetitions compared to 66.85% of Copilot code snippets.

Finding 2.1: Snippet Length Differences
Copilot generates 38.52% more lines of code than Stack Overflow, so its
snippets are longer on average. They also have more duplicate lines.

In general, Copilot generates more code for the same set of queries, the inci-
dence of repetition within its snippets again points to the lack of diversity. If the
repetition is characterized by the type of snippets displayed in Figure 5.4, this
indicates Copilot may generate a sizable amount of ‘junk’ responses. Addition-
ally, because of the propensity for longer snippets to have more bugs, Copilot
may be inferior in this regard.

5.4.4 RQ2.2: Comments in Snippets

We look at the frequency of comments within snippets generated by both CCEs.
Comments can provide documentation or explanations of code, and can make
comprehension of code easier; for example, code on Stack Overflow is often
accompanied by a natural language explanation. We used tree-sitter to identify
comments in code.

Table 5.4. Comments per CCE and Language

SO CP Total

Total 19,282 11,618 30,900

Java 8,803 252 9,055
Python 10,479 11,366 21,845

Table 5.4 shows the total number of comments per CCE and Language.
The Stack Overflow set contains 65.97% more comments than the Copilot set;
30.43% of Stack Overflow code snippets include comments, while only 7.88% of
the Copilot set do. The average number of comments per snippet were 1.11 and
0.74 respectively. However, when we exclude the no comment set, we observe

104 Chapter 5. Generating Code Examples

1 def main():
2 # create a list of items
3 items = [
4 "apple",
5 "banana",
6 "grapes",
7 "orange",
8 "pineapple"
9]

10 # display the list
11 print(items)
12 # display the list
13 print(items [0])
14 # display the list
15 print(items [1])$\lstsetnumber {}$
16 ...$\lstresetnumber\setcounter{lstnumber }{68}$
17 print(items [31])
18 # display the list

Figure 5.5. Example of repeating comments in the Copilot set.

that when there are comments, Copilot snippets have more on average (9.38
comments vs Stack Overflow’s 3.65).

Because repetition was observed in the LOC analysis (Section 5.4.3), we
again measure the number of duplicate comments per snippet. Due to the
nature of comments, we expect to see some repetition; for example, the com-
ment ‘TODO’ appears 9 times in a single snippet. 32.1% of Copilot snippets
with comments included duplicates, compared to just 5.8% of Stack Overflow
snippets. The highest duplicate count for a comment per snippet in the Stack
Overflow set was 18, where the same comment was repeated for a series of
automatically generated method declarations. For Copilot, the most repeated
comment was ‘display the list” at 34 instances; this code snippet is shown in
Figure 5.5 and appears to show a similar pattern of nonsensical repetition as
was observed in Figure 5.4.

Finding 4: Comments in Snippets
Stack Overflow snippets contain 30.43% more comments than Copilot’s at
7.88%. When snippets do include comments, Copilot snippets have more
per snippet: 9.38 vs. Stack Overflow’s 3.65. Additionally, Copilot has a
higher rate of duplicate comments 32.1% vs. Stack Overflow’s 5.8%.

Stack Overflow snippets appear more likely to include comments, perhaps
as a consequence of the ‘answer’ aspect of the website. Developers answering
questions may feel the need to explain parts of their code, which might not
otherwise be commented in project code. This suggests Stack Overflow code
snippets are demonstrational and explanatory in a way Copilot snippets are
not.

5.4. Results 105

Figure 5.6. Most common external libraries for each CCE and
language. Note that Copilot has no imports for Java.

106 Chapter 5. Generating Code Examples

5.4.5 RQ2.3: Snippet API Usage

Developers commonly use third-party libraries to reduce the amount of code
they need to write and maintain. With this in mind, we ask if API usage
differs between machine and human-written code. We hypothesize that Copilot
is more likely to avoid API usage; unlike the human developers answering Stack
Overflow questions, it has no understanding of what libraries exist, where to find
libraries, when a library can be useful, and how libraries benefit development.
This would suggest that, ironically, a tool for speeding up code-writing such as
Copilot might actually be increasing technical debt and riddling a code base
with micro-code clones (or near clones).

Table 5.5. Import statements per CCE and Language

SO CP Total

Total 6,496 8,313 14,809

Java 2,591 0 2,591
Python 3,905 8,313 12,218

First, we analyse the frequency of import statements within the dataset.
Table 5.5 shows the total number of import statements for Stack Overflow and
Copilot, with additional language breakdowns. Additionally, we observe the
number of snippets with at least one import statement: only 617 of Copilot
code snippets contain an import statement compared to 3,283 Stack Overflow
snippets (3.92% and 18.90% of all snippets respectively). Per language, we
see that Copilot generates no Java snippets with import statements. This can
likely be explained by the evocation location; we ask Copilot to complete a Java
function in a class, and import statements can only be declared at the top of a
file unlike in Python.

We find that the mean number of imports within the set of snippets with
at least one import was 1.98 for Stack Overflow and 13.47 for Copilot. While
the median number was 1 and 2 imports, the maximum per snippet was 32 and
112, respectively. Again, we checked for repetition to explain these outliers.
We observe a similar pattern as in previous sections: 21.72% of Copilot code
snippets with imports had duplicates, compared to just 4 cases in the Stack
Overflow set. For these 4 cases, the duplication was a single instance, while the
average duplicate for the 134 Copilot cases was 27.40, indicating an extreme
amount of duplication for this aspect of code.

Next, we characterize the use of third-party libraries in particular. External
libraries, compared to standard libraries like Java’s ArrayList and Python’s
math, made up 36.81% of Stack Overflow and 52.97% of Copilot import state-
ments. 7.01% of Stack Overflow and 2.36% of Copilot snippets imported an
external library. Figure 5.6 shows the top 10 third-party libraries for each
dataset (note that Copilot has no Java imports), and the percent of external
imports each accounts for. 37.60% of external imports in the Copilot set belong
to the matplotlib library. We observe similar packages within the most com-
mon subset across both CCEs: numpy, pandas, scipy. Again, we observe less

5.4. Results 107

diversity in the Copilot set: there were a total of 184 unique external libraries
imported compared to Stack Overflow’s 242.

Additionally, we looked at method calls, as import statements may not de-
scribe the entire extent of API usage within snippets. Two authors manually
annotated if method calls likely belonged to a third-party library or not, look-
ing at the entire method call (for example, the method plt.subplot()) likely
belongs to the python library matplotlib). For ambiguous cases, we defaulted
to the majority case (not external). Authors annotated a sample of 739 method
calls; this sample represents all method calls for each CCE and language with
20 or more occurrences within the dataset: 377 for Copilot (202 Java and 175
Python) and 362 for Stack Overflow (176 Java and 186 Python). Authors first
both annotated the same random sample of 50; for a Cohen’s Kappa of 0.65
(substantial agreement). After discussing inconsistencies, both authors then
independently rated half of the remaining set each.

1 static void main(String [] args){
2 WebDriver driver = new FirefoxDriver ();
3 driver.get("http :// www.google.com");
4 driver.findElement(By.name("q")).sendKeys("Selenium");
5 driver.findElement(By.name("btnG")).click();
6 driver.close();
7 }
8 }

Figure 5.7. Copilot Java Snippet using the Selenium API.

Our method call analysis reveals that 12.47% of Copilot method calls were
for external libraries, compared to Stack Overflow’s 17.13%. We also observed
that while Copilot Java snippets did not include import statements, 9.41%
of method calls still made use of third-party libraries such as Selenium and
Apache Commons. Figure 5.7 shows one such code snippet for the method call
driver.get().

Finding 5: Snippet API Usage
Copilot is less likely to use APIs: only 3.92% of snippets import a library.
Additionally, 7.01% of Stack Overflow and 2.36% of Copilot snippets im-
ported a third-party library. Despite no Java snippet importing a library,
Copilot snippets still make use of API calls.

Because Copilot is less likely to use APIs, it may result in snippets that add
more technical debt to a project where library use is preferable. Additionally,
because Copilot still uses APIs without import statements, as demonstrated in
the Java subset, developers need to spend time inferring what libraries a snippet
makes use of.

5.4.6 RQ2.4: Snippet Errors

Code snippets sourced from online are often fragmented and, when copy-and-
pasted, contain errors that make code reuse difficult (Yang, Hussain, and Lopes,

108 Chapter 5. Generating Code Examples

2016); developers then devote time to fixing these errors and correctly integrat-
ing code into their projects. We ask if Copilots additional code context improves
the rate of errors, or, as discussed in previous sections, if it is more likely to
generate ‘nonsense’ snippets.

Table 5.6. Errors per CCE and Language

SO CP Total

Total 22,903 2,938 25,841

Java 13,669 1,660 15,329
Python 9,234 1,278 10,512

To gain an understanding of what problems snippets have, we analyse er-
rors reported by tree-sitter. Tree-sitter reports erroneous and missing nodes
when it encounters issues parsing code, but it does not report any other error
information. In addition, parsing errors do not reveal the full scope of errors;
parsable code may still not run. For this analysis, we parsed Copilot snippets
with the generation context attached; that is, Java snippets begin after the
public shown in Figure 5.1. Without this change, all Copilot Java snippets
would generate errors. Python generations include the supplied def already, so
needed no change. For Stack Overflow snippets, we recreate a similar realistic
copy-and-paste scenario for Java; we parse snippets as if they are pasted into
an empty class and main function. Python is less strict about structure, so we
make no changes for this set.

Table 5.6 reports the number of errors per CCE and Language, where Stack
Overflow snippets have 679.54% more errors than Copilot snippets. Tree-sitter
reports that 31.43% of Stack Overflow snippets and 10.46% of Copilot snippets
have errors. On average, Stack Overflow snippets have 1.32 errors, while Copilot
snippets have 0.19. This trend continues per language: 45.71% of Java Stack
Overflow snippets have errors vs. 12.07% of Copilot’s. For Python this is
19.53% vs. 8.86%.

Finding 6: Snippet Errors
Copilot snippets are not error free; however, we find that Stack Overflow
snippets are more likely to have parsing errors; 31.43% of Stack Overflow
vs. 10.46% of Copilot snippets.

This error analysis suggests that the code context provided with Copilot
queries does enable Copilot to better integrate snippets within an existing struc-
ture, thus reducing integration work required of traditional copy-and-paste code
reuse. However, Copilot snippets are not free of errors, and may still require
developers to spend time fixing errors; it still appears to be significantly less
than with snippets from Stack Overflow.

5.4.7 RQ2.5: Snippet Relevance

To evaluate the relevance of code snippets, we annotated a subset of the data
based on their relevancy in addressing the initial query. We randomly selected

5.4. Results 109

336 queries to achieve a 95% confidence level with a 5% margin of error. The
rating scale we used to measure relevance is a variation of the one proposed and
used by Mahajan, Abolhassani, and Prasad (2020), which was originally based
on Begel and Zimmermann (2014), Lo, Nagappan, and Zimmermann (2015),
and Kitchenham and Pfleeger (2008). Mahajan et al. employed four distinct
categories to measure Stack Overflow post relevancy:“Instrumental”, “Helpful”,
“Misleading”, and “Unavailable”.

Since our project focuses on code snippets rather than the availability of
results, we excluded the “Unavailable” category and added a “Relevant Post”
category to our rating scale. We rated Stack Overflow results as “Relevant Post”
if the code snippet was “Misleading”, but the post itself could be considered
“Instrumental” or “Helpful”.

We labeled a code snippet as “Instrumental” when it perfectly addressed the
initial query, and conversely, we labeled it as “Misleading” when it provided no
help in answering the query. Between these extremes are “Helpful” code snip-
pets. We further classified the “Helpful” category into six reasons for assigning
this label.

Table 5.7. Relevance of code snippets to query. he = hu-
manEval, lc = leetcode, lt = leetcodeTitles, so = soSearches

Rating he lc lt so Total

CP

Instrumental 59% 44% 45% 53% 169 (50%)
Helpful 9% 9% 11% 7% 28 (8%)
Misleading 31% 47% 44% 41% 139 (41%)

Stack Overflow

Instrumental 6% 9% 29% 14% 48 (14%)
Helpful 17% 8% 15% 26% 60 (18%)
Relevant Post 19% 13% 12% 15% 49 (15%)
Misleading 59% 71% 44% 45% 179 (53%)

To mitigate the subjectivity of the annotation process, we implemented sev-
eral steps beyond simply having the annotator read the code. For Stack Over-
flow code snippets, we also reviewed the original post from which the snippet
was taken, taking into account other users’ comments. For Copilot code snip-
pets, we employed a variety of methods for annotating, including running and
testing the code on a local IDE, consulting ChatGPT, and for LeetCode queries
where the task was clear, submitting the code as an answer to the corresponding
LeetCode problem and noting its acceptance.

As shown in Table 5.7, when comparing the relevance of code snippets, Copi-
lot performed better overall, with a higher percentage of code snippets being
“Instrumental” or “Helpful” (58% vs. 32%) and a lower percentage of “Mislead-
ing” code snippets (41% vs. 53%). Furthermore, when Copilot-generated code
snippets were useful, they were significantly more likely to be “Instrumental”

110 Chapter 5. Generating Code Examples

rather than “Helpful” (50% vs. 8%), in contrast to Stack Overflow code snippets
(14% vs. 18%).

As illustrated in Table 5.8, focusing on why Stack Overflow code snippets are
more likely to be labelled as “Helpful” instead of fully “Instrumental”, the most
prominent reasons include the code snippet solving a more complex problem
than the task required, with the solution itself still contained within (35%), or
the code snippet helping with part(s) of the task but not solving it as a whole
(32%). These were also the top two reasons for “Helpful” Copilo code ratings,
albeit at different percentages of 21% and 50%, respectively.

Another observation was that there were cases where the code snippet pro-
vided from Stack Overflow was correct for a different circumstance but still
helpful overall; for example, by providing the code to draw a frowny face in-
stead of a smiley face as queried. These scenarios were not seen in any of the
annotated Copilo code snippets. When Copilo code snippets were “Helpful” or
“Instrumental”, they more often targeted the specific query circumstances and
frequently included suitable method naming for the task.

Finding 7: Snippet Relevance
Copilot produced more instrumental or helpful code snippets and fewer
misleading ones compared to Stack Overflow. Stack Overflow snippets often
encountered scope-related issues, with the scope being either too large or
too small, which hindered them from perfectly addressing the query.

The challenges associated with code reuse are far from being resolved, as
both CCEs continue to produce misleading code snippets in many instances.
Nevertheless, large language models appear to have tackled the issue of mis-
match between query scope and solution scope, which is frequently observed on
Stack Overflow.

5.4.8 RQ3.1 Keyword Queries

Traditional search engines, like the Google search used to generate our Stack
Overflow dataset, accept natural language queries. However, search engine in-
dexing and retrieval operates on the keywords within those queries. Search
engines also often ignore common words that don’t contain topical informa-
tion — stop words like ‘the’ and ‘a’. Similarly, Copilot accepts a code context
which can have natural language embedded within as comments, as we do for
our queries. We ask then, what happens when we modify queries to have only
keywords? Does the lack of syntactic information affect the results of LLMs
like Copilot? How different are the results with this information removed? We
expect Stack Overflow to be less affected by the change, but the reduction in
information provided to Copilo may enable less specific results.

We take our initial set of 2,628 queries, and utilize nltk (Project, 2023)
to generate keyword-only queries, using part-of-speech tagging to only retain
nouns, adjectives and verbs. For example, the query ‘how to parse .csv file
in python’ becomes ‘parse .csv file python’. We then repeat the same mining
process used in Section 5.3 to generate a second set of snippets from both Stack
Overflow and Copilot.

5.4. Results 111

T
a
bl

e
5.

8.
Fu

rt
he

r
br

ea
kd

ow
n

of
“H

el
pf

ul
”

re
su

lt
s.

he
=

hu
m

an
E

va
l,

lc
=

le
et

co
de

,l
t

=
le

et
co

de
T

it
le

s,
so

=
so

Se
ar

ch
es

R
ea

so
n

h
e

lc
lt

so
T
ot

al

C
P

C
od

e
do

es
no

t
ru

n
as

in
te

nd
ed

bu
t
ge

ne
ra

lly
ha

s
th

e
ri

gh
t
ap

pr
oa

ch
7%

2
(7

%
)

C
od

e
sn

ip
pe

t
so

lv
es

a
m

or
e

co
m

pl
ex

pr
ob

le
m

th
an

qu
er

y
(b

ut
so

-
lu

ti
on

is
co

nt
ai

ne
d

w
it

hi
n)

21
%

6
(2

1%
)

C
od

e
is

co
rr

ec
t

bu
t

m
ay

le
ad

to
er

ro
rs

in
so

m
e

lik
el

y
to

oc
cu

r
in

-
st

an
ce

s
11

%
7%

5
(1

8%
)

C
od

e
he

lp
s

w
it

h
pa

rt
(s

)
of

qu
er

y
bu

t
do

es
no

t
so

lv
e

th
e

ta
sk

as
a

w
ho

le
7%

11
%

25
%

7%
14

(5
0%

)

C
od

e
is

in
co

m
pl

et
e

or
m

is
si

ng
ke

y
pa

rt
s

4%
1

(4
%

)

S
O

C
od

e
do

es
no

t
ru

n
as

in
te

nd
ed

bu
t
ge

ne
ra

lly
ha

s
th

e
ri

gh
t
ap

pr
oa

ch
2%

1
(2

%
)

C
od

e
sn

ip
pe

t
so

lv
es

a
m

or
e

co
m

pl
ex

pr
ob

le
m

th
an

qu
er

y
(b

ut
so

-
lu

ti
on

is
co

nt
ai

ne
d

w
it

hi
n)

5%
30

%
21

(3
5%

)

C
od

e
is

co
rr

ec
tb

ut
fo

ra
di

ffe
re

nt
ci

rc
um

st
an

ce
(o

ve
ra

ll
st

ill
he

lp
fu

l)
2%

2%
3%

4
(7

%
)

C
od

e
is

co
rr

ec
t

bu
t

m
ay

le
ad

to
er

ro
rs

in
so

m
e

lik
el

y
to

oc
cu

r
in

-
st

an
ce

s
2%

2%
2%

10
%

9
(1

5%
)

C
od

e
he

lp
s

w
it

h
pa

rt
(s

)
of

qu
er

y
bu

t
do

es
no

t
so

lv
e

th
e

ta
sk

as
a

w
ho

le
8%

7%
7%

10
%

19
(3

2%
)

C
od

e
is

in
co

m
pl

et
e

or
m

is
si

ng
ke

y
pa

rt
s

2%
2%

2%
5%

6
(1

0%
)

112 Chapter 5. Generating Code Examples

Table 5.9. Overview of the Keyword Query Dataset

Queries Snippets

SO CP Total

Total 2,628 17,133 24,502 41,635

Java 1,314 7,900 12,180 20,080
Python 1,314 9,233 12,322 21,555

Figure 5.8. Distribution of number of snippets per keyword
query, for each CCE.

Table 5.9 shows the resulting dataset. We see that the number of Stack
Overflow snippets remains similar between query variations (a 1.39% decrease in
snippets), but that the Copilot set has increased from 15,732 snippets to 24,502
(a 55.75% increase). All Copilot queries return at least 1 snippet, however,
Stack Overflow fails to generate results for an additional 219 queries, for a total
of 530 queries. Figure 5.8 shows the distribution of number of snippets per
query: on average Copilot generates 9.32 snippets per query, to Stack Overflow’s
6.52. Copilot’s built-in duplicate removal only triggers for 567 queries now
(21.58%), to remove 1,223 snippets. When we look at exact matches between
the returned snippets before and after query modification, we observe that 7,704
Stack Overflow snippets are returned for the same queries in both sets (44.97%).
However, only 77 snippets in the Copilot set are exact matches. 1,782 (67.81%)
Stack Overflow queries return at least one of the same snippets regardless of
keyword usage. The same can only be said for 69 Copilot queries.

Again, we look at the snippet diversity using NCD. We find that the average
NCD between snippets for the same query remains similar for Stack Overflow:
an average NCD of 0.660 for Java and 0.674 for Python. However, Copilot
average NCD increases from 0.344 and 0.376 to 0.429 and 0.507 for Java and
Python respectively, indicating a greater degree of difference between snippets
returned for the same query. Figure 5.9 shows the distribution of NCDs for

5.4. Results 113

Figure 5.9. Keyword query distribution of NCDs for each CCE
and language.

same-query snippet pairs.

Finding 8: Keyword
Stack Overflow results remain similar with the use of keyword queries, but
Copilot generates 55.75% more snippets, filters duplicates in fewer cases,
and returns more diverse snippets. Additionally, 44.97% of Stack Overflow
snippets are returned for both query types.

The Copilot results indicate that the shortened, keyword queries enable
Copilot to generate more, and more diverse, snippets. However, over half of
Stack Overflow’s snippets are different. Replacing natural language queries
with keywords impacts the output of both CCEs. Keyword only queries remove
information from queries, possibly resulting in more ambiguous queries; the
increase in diversity may also result in a decrease in relevancy.

5.4.9 RQ3.2 Method Signature Queries

Copilot deals with code context to generate its completions, and so we ask:
what happens when we include code with our queries? Software development
already takes place within the domain of code; search-based code reuse involves
an additional step of taking an idea or problem and encoding it in natural
language to form a query. Thus, the interface of code offers a new way to reuse
code that might be more intuitive to developers. We expect that Copilot will
perform preferably here, while traditional, general-purpose search engines are
not built to understand code.

For a subset of our queries (the ones sourced from LeetCode and humanEval),
we have associated method signatures for the expected result; for LeetCode

114 Chapter 5. Generating Code Examples

sourced queries, we have both Python and Java, and for humanEval, Python
only. Using these method signatures, we generate a new query set of 1,698
queries: 768 Java queries, and 930 Python queries. Again, we repeat the same
mining process from Section 5.3 to generate a new set of snippets. However, we
modify the Copilot input code; we still provide the natural language query as a
comment, but this time provide the method signature in place of the unfinished
function starter. For Stack Overflow, we append the method signature to the
end of the natural language query.

Table 5.10. Overview of the Method Query Dataset

Queries Snippets

SO CP Total

Total 1,698 1,869 9,716 11,585

Java 768 843 4,455 5,298
Python 930 1,026 5,261 6,287

Table 5.10 shows the number of snippets with modified queries. For the same
subset of queries, the original dataset returns 10,102 Stack Overflow snippets
and 11,519 Copilot snippets, thus we see an 81.50% reduction in the number
Stack Overflow snippets, and a 15.65% decrease for Copilot. Snippets per query
average 1.10 for Stack Overflow, while for Copilot the average is 5.72 snippets.
However, Stack Overflow fails to generate results for 1,443 queries (84.98%).
Copilot only fails for 1 query. Again, Copilot removes 7,317 duplicates, across
87.87% of queries. When we look at exact matches between the unmodified
and modified per query snippet sets, we find only 393 incidences for the Stack
Overflow set and 48 for the Copilot set. For 10.01% of Stack Overflow queries,
at least one snippet remains the same. The NCD between snippets of the same
query did not change significantly with the addition of method calls.

Finding 9: Method Signatures
Stack Overflow returns 81.50% fewer snippets when queries include method
signatures, and fails to generate output for 1,443 of the 1,698 queries. For
Copilot, the reduction in snippets was smaller: 15.65%.

These findings suggest, as expected, that traditional web search does not
work well with code. The implication of this, then, is that LLMs like Copilot
that are capable of utilizing code context enable a new way to search for code
snippets. If developers have some idea of what a method input and output
should be, providing method signature information can be useful. However,
Copilot’s lack of diversity remains an issue; 87.87% of queries had duplicates
that were removed.

5.4.10 Threats to Validity

There are several potential threats to the validity of this study.

5.5. Conclusion 115

Threats to the internal validity compromise our accuracy in establishing
relationships between independent and dependent variables. The selection of
queries and code snippets used for our evaluation may not be representative
of the diverse range of programming problems developers face. We tried to
mitigate this threat by choosing programming problems from a range of sources.
Additionally, the metrics used to evaluate output quality and user interface,
such as NCD, might not fully capture the nuances of code quality or relevance.
To reduce the impact of this threat, we compared multiple aspects of the code
snippets. Additionally, we cannot be sure to what extent Stack Overflow threads
were part of the training data for Copilot, and we do not know how that might
have affected our results.

Threats to external validity relate to the generalizability of our results. We
cannot generalize our results to other languages, ecosystems, or to other websites
or large language models. The study was also conducted with specific versions
of Copilot and a particular snapshot of Stack Overflow. Updates over time
may lead to different results, limiting the long-term validity of the findings.
Future iterations of large language models could address some of the weaknesses
identified in the study, rendering some conclusions obsolete.

Despite these threats, our findings provide insights into the ongoing shift
from copy-paste programming to a growing reliance on AI-generated code, high-
lighting the utility and limitations of generated code in comparison to conven-
tional methods.

5.5 Conclusion

We systematically examined the strengths and weaknesses of alternative code
completion approaches, Copilot and Stack Overflow, in the context of software
development. Our findings reveal that Copilot generates snippets more fre-
quently, has fewer syntax errors, and provides more helpful code compared to
Stack Overflow. However, Copilot’s output is less diverse, tends to hallucinate
answers, and has fewer API calls. Stack Overflow snippets, on the other hand,
contain more comments and are more diverse per query. Query variations, such
as using keywords or method signatures, have different effects on both plat-
forms. These insights shed light on the trade-offs between Copilot and Stack
Overflow, providing guidance for software professionals seeking to navigate the
rapidly evolving landscape of source code reuse. Understanding these trade-offs
will facilitate more informed decision-making and contribute to the development
of efficient and intelligent programming practices.

117

Chapter 6

Conclusion and Future Work

The automation of code reuse is a promising direction of research in the field of
software engineering, where much development relies on the reuse of already ex-
isting software artefacts, such as code snippets and libraries. Developers source
code snippets from various sources, such as online or those generated by large
language models, and each presents unique challenges. The overall aim of this
work is to improve the efficiency of software developers by automating existing
workflows; dedicated tools can improve efficiency, for example, by automatically
correcting errors in the context of the intended use of the snippet. In this the-
sis, we investigate various techniques for automating aspects of the code reuse
process and evaluate these techniques — in one case, with real developers.

Existing work in this area often focuses on automating one part of the code
reuse process; that is typically the retrieval of code snippets. As we describe
in Chapter 1, searching is only the first stage of the code reuse process devel-
opers usually undertake. This still leaves developers grappling with code that
often does not run, and that may require correction and integration within
their existing project. We propose a solution, Node Code Query (NCQ), that
both embeds code and library search within the programming environment and
automatically corrects errors in snippets. NCQ improves code snippet quality
and aids developers in the integration of snippets. Following this work, we
investigate a technique for more robust code snippet error detection and im-
provement in Node.js using the TypeScript compiler, which out-performs our
previous parser-based approach. Finally, we examine how AI code synthesis
such as OpenAI’s Codex and GitHub’s Copilot fit into the code reuse discus-
sion, when generated code aims to fulfil a similar purpose as online code snippet
reuse. We compare Copilot to current reuse patterns that utilize Google and
Stack Overflow and find that Copilot generates snippets with fewer errors, likely
because it is capable of taking the code context into account when generating.
In this way, large language model code generation may reduce the need for de-
velopers to correct and integrate snippets, making them useful for developers
already despite growing concerns for the quality of their output.

This thesis makes the following contributions:

• The development of a Node.js read-evaluate-print loop (REPL) program-
ming environment, Node Code Query (NCQ), that embeds library and
code search within the editor to reduces context switching between edi-
tor and web browser. Additionally, NCQ automatically corrects snippets

118 Chapter 6. Conclusion and Future Work

before showing them to developers, to reduce time spent manually correct-
ing them. We evaluate NCQ and its prototype with 20 Node.js developers
against baselines of manual code reuse. Our results show that our code
reuse focused programming environment and snippet correction aids de-
velopers in finding solutions to their tasks more quickly than manual code
reuse, and that developer perceptions of the tool are generally positive.

• Based on the results of NCQ and an analysis of existing work in Node.js
error detection and correction, we investigate the use of the TypeScript
compiler for the automated correction of code snippets. We observe that
existing work in this area relies on parsers and linters, which often fail
in cases of erroneous code. When we observe the results of ESLint on
our dataset of NPM README code snippets, we find that many snippets
report only a single parsing error (indicating where parsing failed), and
for these cases, no AST can be generated. We improve upon NCQ’s code
corrections to produce Node Code Correction (NCC), our approach for
correcting Node.js code snippets using the TypeScript compiler. With
the TS Compiler, we observe that we can detect a greater range of errors,
with more useful information. With the use of TypeScript’s built-in fixes,
our own custom fixes and line deletion, we are able to reduce the number
of snippets with errors from 73.7% to 25.1%.

• We compare large language model (LLM) code generation to existing man-
ual code snippet reuse processes, via a comparison of Copilot and Stack
Overflow combined with Google. LLM generated code threatens to change
the landscape of both code reuse and software development. In particu-
lar, generated snippets serve a similar purpose as online-sourced snippets;
when a developer wants to find a code solution to a task, they may no
longer have to look online, but instead generate them for their unique con-
text. However, questions remain about the quality and usefulness of its
output at this stage. In this sense, we aim to characterise the differences
between Copilot’s output and Stack Overflow’s output for the same set of
queries, and what this might tell us about their usefulness going forward.
We observe that Copilot snippets had fewer errors, but less diversity, and
they were not without problems that might still slow the adoption of LLM
code completion.

The work in this thesis represents one step towards automating code reuse,
but there are multiple directions for future work. In general, there is room to
improve the results of our approaches further. Additionally, like many of the
techniques we present build on existing work and adapt techniques for Node.js
(such as our prior work in Java), there may again be unique challenges adapt-
ing them for other languages. Because code search and error detection and
correction are often language specific — that is, the characteristics of different
languages make error correction non-generalisable, and developers in different
language ecosystems have their own sources for snippets and libraries — there is
always the potential to adapt these techniques for new contexts and languages.
The following sections describe other avenues for future work.

6.1. Empirical Studies on Code Correction 119

6.1 Empirical Studies on Code Correction

There is currently little understanding of the changes developers make when
manually correcting snippets during the code reuse process. Of interest is how
useful automated corrections like the ones employed by NCQ and NCC are
to real developers. In Chapter 4 we evaluate NCC on a dataset of real Stack
Overflow snippets over time, to compare to manual code corrections, and in
Chapter 3 we evaluate code corrections within the context of our tool. How-
ever, we have yet to investigate how developers actually fix snippets, and how
comparable our automated approaches are. By studying how real developers
correct snippets, and what they think of our automated fixes, we might uncover
new insights to improve our approaches.

One potential study design may be to source a dataset of erroneous snippets
(such as the dataset used to evaluate NCC in Chapter 4) and have developers
correct these snippets in a study, observing the steps they take. From this study
we would additionally produce a dataset of manually corrected snippets that we
could then compare to our automatic fixes via NCC. Additionally, to observe
what developers think of our automatic fixes, we could run a second study with
another set of developers, where we ask them to provide feedback for snippets
from both sources. The aim would be to see if feedback differs between the two
sources, and why. Alternatively, we could observe developers using NCC as part
of the code reuse process, and compare to manual reuse, in order to investigate
how useful the fixes are to developers within this context. We would look at
time to complete various programming tasks with and without assistance, how
often developers accept our automatic corrections and how often they need to
make additional changes.

6.2 Empirical Study of GitHub Copilot

In Chapter 5 we compare the output of Copilot to Stack Overflow combined
with Google, in order to gain insights into their differences and how large lan-
guage model code generation may be used in the future. However, we may gain
additional insights by comparing their use with actual developers. Ultimately, it
is developer perceptions of these tools that will shape their future adoption. By
observing developers using the plug-in in real programming situations, and by
asking for their perspectives, we may identify new concerns that other research
has overlooked. Additionally, we may be interested in the awareness of existing
concerns in the literature, and what developers do to mitigate what problems
they currently experience. This knowledge can help drive future development
of similar tools.

Already, there is a large amount of research on prompt engineering, or how
users interface with large language models to get their desired output. However,
there has been little empirical work on GitHub Copilot, which might reveal if
this research holds true in a software development context, and in actual use.
In Chapter 5 we observe, for example, that our prompt location impacted the
types of snippets we could generate; no Java Copilot snippet included an import

120 Chapter 6. Conclusion and Future Work

statement (because import statements need to be at the top of the file). By
observing real use, we may reveal more cases like this, or observe how frequent
situations like this actually are. While we currently conjecture that Copilot’s
snippets fulfil a similar purpose as online code reuse, it’s possible that the
situations that developers employ both techniques might also differ.

A proposed study idea is to have real developers complete programming
tasks with the help of either Copilot and Stack Overflow, and then compare
their performance. Additionally, we would record and log their development
process, to see how often they searched for snippets with either resource, how
often they accept the first result, and how often they needed to make changes
to a given snippet (and the nature of those changes), as well as the types
of snippets they seek out (fragments vs whole functions or classes) and the
types of queries they use. We would aim to select a variety of tasks that cover
various concerns with LLM generated code in the literature, such as security
and library usage. While we hypothesise that Copilot and Stack Overflow are
used in similar situations, the additional convenience and auto-complete aspects
of Copilot may make usage more frequent; on the other hand, quality concerns
may make developers more hesitant.

Additionally, we would be interested in developer perceptions of both ap-
proaches. Developers might already use or avoid Copilot, or prefer one approach
over the other, and the reasons they give can aid development of future tools.
For example, if developers seem to generally like that Copilot snippets are gener-
ated for them as they program, this is potentially a feature that could be added
to a code reuse tool. Conversely, if developers prefer Stack Overflow snippets
because they’re accompanied by natural language explanations and feedback,
such as votes and comments that help them make informed decisions, perhaps
there is an avenue for combining generated code with similar aspects. It would
also be interesting to observe the current usage rates of Copilot in comparison
to Stack Overflow.

6.3 AI Assisted Code Correction and Integration
of Snippets

One potential avenue of merging the benefits of online code reuse and large
language models may be to use LLMs to perform the integration of existing
snippets. In Chapter 4 we note that much work in the area of correcting snippets
for new contexts relies on heuristic fixes that must make guesses; for example,
when defining a missing variable, it must have its value guessed. A LLM has the
ability to predict what this value should be based on context and from the large
amount of code in its training data. For these reasons, using LLMs to integrate
and correct snippets during the reuse process may be a good fit. Additionally,
we observed in Chapter 5 that snippets generated by Copilot had fewer errors
than those sourced from Stack Overflow, but that they lacked diversity and
could be nonsensical at times. One issue identified with LLMs is the generation
of nonsense output, or ‘hallucinations’, so we ask if output is more likely to be
‘grounded’ if the model operates on an existing code input. Sourcing snippets

6.4. Automatically Generated Test Cases 121

from online may avoid some concerns with LLM output quality. This idea aims
to leverage both the usefulness of LLM generated snippets and online snippets
together.

A potential research idea is to develop a tool that can take a code snippet to
insert, and the destination file and location, combine these together and then
prompt a LLM (either something code-focused such as Codex or general purpose
like GPT) to fix any integration errors. To validate the tool, we could then see
how the error landscape changes before and after using static analysis, like the
methods discussed in Chapter 4. Additionally, we could observe the kinds of
changes that a LLM makes to snippets, and if the general concerns with LLM
generated code remain true in this new context. It may also be interesting to
see if providing the results of static analysis, such as detected errors in a piece
of code, improves performance.

6.4 Automatically Generated Test Cases

Test cases are an important aspect of validating code functionality, especially
to determine the runnability and quality of code, but this has often been under-
utilised in work relating to code snippets. While most code snippets sourced
from online do not run, there is a desire to measure their functionality when
they do work.

In prior work on NLP2TestableCode (Reid, Treude, and Wagner, 2020), we
attempted to generate JUnit test cases for Java code snippets sourced from
Stack Overflow using heuristics. This process involves converting a snippet to a
function with input and output, where these values are guessed using heuristics.
Then, potential output values are guessed for a test case. These test cases were
used as part of a code reuse tool in an attempt to automate the functionality
testing stage of code reuse, however, this process leaves much to be desired.

As with heuristic corrections, heuristic test case generation could be aug-
mented with LLMs. We would devise a tool to take a snippet, and then generate
a function and test case. This tool could also be useful outside a code reuse
context, in generating test cases for a given file automatically. In a code reuse
context, we would also likely have a natural language query that could be used
to derive what the test case should be testing for, which could also be provided.
To validate this tool, we may want to test it with real developers to see how
useful it is. We may also want to manually evaluate individual outputs to see if
they make sense; that is, do they work, and would they be helpful? Finally, we
could evaluate the test case generation of a dataset of snippets to see how many
are runnable, and how many snippets pass. If we were to develop a tool for
Java, we could potentially compare results with our previous approach, where
we would expect better performance with the aid of LLMs.

122 Chapter 6. Conclusion and Future Work

6.5 Investigating Industry Perceptions of Open
Source Software Libraries

As discussed in Chapter 1, much of modern software relies on open-source li-
braries and complicated chains of dependencies, including software in industry
(for example, companies such as Microsoft and Meta, who even open-source
some of their software). The use of software libraries, like code reuse in gen-
eral, enables focus elsewhere and speeds up development. However, this reliance
on external software has its own challenges. Additionally, there is little work
on what industry developers using open-source think about the libraries they
frequently use, and what policies they follow and challenges they may experi-
ence. Understanding these processes and challenges will enable us to better aid
developers when they use libraries in an industry context.

One potential research idea is an interview study of industry developers
who use open-source libraries, investigating the processes, policies and chal-
lenges of using open-source libraries. We would focus on the areas of adopting
libraries, maintenance, security, migration, updating, bugs and licences. We
are also interested in what tools developers currently use, or are aware of, to
find libraries and track vulnerabilities and updates. For example, in the area
of library adoption, we are interested in what qualities developers look at when
selecting libraries. We would ask developers about policies and processes, but
also present them with situations they may have encountered to understand how
they handle similar challenges. One idea is to focus on Node.js and Java devel-
opers, as there is a large open source community in both of these ecosystems.
Potentially, we could look to contrast the two groups.

The aim of this work would be to identify challenges that could then be
addressed in future work. Specifically, we are looking for developers to identify
issues they need solutions to that are currently unidentified in the literature.
For example, if developers have trouble finding suitable libraries for industry
use, there is the potential to develop a tool specifically for finding libraries in
this context.

In conclusion, code reuse is an ever-evolving field, and thus the problem of
aiding developers in this common development is likely to always require more
investigation. As new technologies emerge, so too should complementary tools
and techniques to aid reuse. It is also important to understand how developers
actually interact with code, libraries and reuse tools, in order to deliver realistic
solutions. Now, with the emergence of large language model code generation,
the area of code reuse is poised to shift; we hope to give developers the insights
and tools to make the most of it.

123

Bibliography

Abdalkareem, Rabe, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and
Emad Shihab (2017). “Why Do Developers Use Trivial Packages? An Em-
pirical Case Study on NPM”. In: ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), 385–395.

Al Madi, Naser (2022). “How Readable is Model-generated Code? Examining
Readability and Visual Inspection of GitHub Copilot”. In: 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1–5.

Alkaissi, Hussam and Samy I McFarlane (2023). “Artificial hallucinations in
ChatGPT: implications in scientific writing”. In: Cureus 15.2.

An, Le, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol (2017). “Stack over-
flow: A code laundering platform?” In: 2017 IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
pp. 283–293.

Asare, Owura, Meiyappan Nagappan, and N Asokan (2022). “Is github’s copilot
as bad as humans at introducing vulnerabilities in code?” In: arXiv preprint
arXiv:2204.04741.

Baltes, Sebastian and Stephan Diehl (2019). “Usage and attribution of Stack
Overflow code snippets in GitHub projects”. In: Empirical Software Engi-
neering (EMSE) 24.3, pp. 1259–1295. issn: 1573-7616. doi: 10.1007/s106
64-018-9650-5. url: https://doi.org/10.1007/s10664-018-9650-5.

Baltes, Sebastian, Lorik Dumani, Christoph Treude, and Stephan Diehl (2018).
“SOTorrent: reconstructing and analyzing the evolution of stack overflow
posts”. In: Proceedings of the 15th International Conference on Mining Soft-
ware Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018. Ed.
by Andy Zaidman, Yasutaka Kamei, and Emily Hill. Association for Com-
puting Machinery, pp. 319–330. doi: 10.1145/3196398.3196430. url:
https://doi.org/10.1145/3196398.3196430.

Baltes, Sebastian, Richard Kiefer, and Stephan Diehl (2017). “Attribution re-
quired: Stack overflow code snippets in GitHub projects”. In: 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-
C). IEEE, pp. 161–163.

Baltes, Sebastian and Markus Wagner (2020). “An Annotated Dataset of Stack
Overflow Post Edits”. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion. GECCO ’20. Cancún, Mexico: Asso-
ciation for Computing Machinery, 1923–1925. isbn: 9781450371278. doi:
10.1145/3377929.3398108. url: https://doi.org/10.1145/3377929.3
398108.

https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1145/3196398.3196430
https://doi.org/10.1145/3196398.3196430
https://doi.org/10.1145/3377929.3398108
https://doi.org/10.1145/3377929.3398108
https://doi.org/10.1145/3377929.3398108

124 Bibliography

Basili, Victor R, Lionel C Briand, and Walcélio L Melo (1996). “How reuse
influences productivity in object-oriented systems”. In: Communications of
the ACM 39.10, pp. 104–116.

Begel, Andrew and Thomas Zimmermann (2014). “Analyze This! 145 Questions
for Data Scientists in Software Engineering”. In: Proceedings of the 36th In-
ternational Conference on Software Engineering. ICSE 2014. New York, NY,
USA: Association for Computing Machinery, 12–23. isbn: 9781450327565.
doi: 10.1145/2568225.2568233. url: https://doi.org/10.1145/25682
25.2568233.

Bird, Christian, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit (2022). “Taking Flight
with Copilot: Early insights and opportunities of AI-powered pair-programming
tools”. In: Queue 20.6, pp. 35–57.

Bird, D. L. and C. U. Munoz (1983). “Automatic generation of random self-
checking test cases”. In: IBM Systems Journal 22.3, pp. 229–245. doi: 10.1
147/sj.223.0229.

Brandt, Joel, Mira Dontcheva, Marcos Weskamp, and Scott R Klemmer (2010).
“Example-centric programming: integrating web search into the develop-
ment environment”. In: Conference on Human Factors in Computing Sys-
tems (CHI), pp. 513–522.

Brownlee, Alexander E. I., Justyna Petke, Brad Alexander, Earl T. Barr, Markus
Wagner, and David R. White (2019). “Gin: Genetic Improvement Research
Made Easy”. In: Proceedings of the Genetic and Evolutionary Computation
Conference. GECCO ’19. New York, NY, USA: Association for Computing
Machinery, 985–993. isbn: 9781450361118. doi: 10.1145/3321707.332184
1. url: https://doi.org/10.1145/3321707.3321841.

Cai, Liang, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and
Zhenchang Xing (2019). “AnswerBot: an answer summary generation tool
based on stack overflow”. In: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1134–1138.

Campbell, Brock Angus and Christoph Treude (2017). “NLP2Code: Code Snip-
pet Content Assist via Natural Language Tasks”. In: IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 628–632.

Campos, Uriel Ferreira, Guilherme Smethurst, Joao Pedro Moraes, Rodrigo
Bonifácio, and Gustavo Pinto (2019). “Mining rule violations in javascript
code snippets”. In: Proceedings of the International Conference on Mining
Software Repositories (MSR). IEEE, pp. 195–199.

Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. (2021). “Evaluating large language models trained on
code”. In: arXiv preprint arXiv:2107.03374.

Chinthanet, Bodin, Brittany Reid, Christoph Treude, Markus Wagner, Raula
Gaikovina Kula, Takashi Ishio, and Kenichi Matsumoto (2021). What makes
a good Node.js package? Investigating Users, Contributors, and Runnability.
arXiv: 2106.12239 [cs.SE].

https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1145/2568225.2568233
https://doi.org/10.1147/sj.223.0229
https://doi.org/10.1147/sj.223.0229
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3321707.3321841
https://doi.org/10.1145/3321707.3321841
https://arxiv.org/abs/2106.12239

Bibliography 125

Cilibrasi, Rudi and Paul MB Vitányi (2005). “Clustering by compression”. In:
IEEE Transactions on Information theory 51.4, pp. 1523–1545.

Cockburn, Andy, Carl Gutwin, and Saul Greenberg (2007). “A Predictive Model
of Menu Performance”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’07. New York, NY, USA: Association
for Computing Machinery, 627–636. isbn: 9781595935939. doi: 10.1145/1
240624.1240723. url: https://doi.org/10.1145/1240624.1240723.

Cottrell, Rylan, Robert J. Walker, and Jörg Denzinger (2008). “Jigsaw: A
Tool for the Small-Scale Reuse of Source Code”. In: Companion of the 30th
International Conference on Software Engineering. ICSE Companion ’08.
New York, NY, USA: Association for Computing Machinery, 933–934. isbn:
9781605580791. doi: 10.1145/1370175.1370194. url: https://doi.org
/10.1145/1370175.1370194.

Dakhel, Arghavan Moradi, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, Zhen Ming, et al. (2022). “GitHub Copilot AI pair
programmer: Asset or Liability?” In: arXiv preprint arXiv:2206.15331.

Danilova, Anastasia, Alena Naiakshina, Stefan Horstmann, and Matthew Smith
(2021). “Do you Really Code? Designing and Evaluating Screening Questions
for Online Surveys with Programmers”. In: Proceedings of the International
Conference on Software Engineering (ICSE), pp. 537–548. doi: 10.1109
/ICSE43902.2021.00057.

Davis, Fred D (1989). “Perceived usefulness, perceived ease of use, and user ac-
ceptance of information technology”. In: Management Information Systems
(MIS) Quarterly, pp. 319–340.

Duran, Joe W. and Simeon C. Ntafos (1984). “An Evaluation of Random Test-
ing”. In: IEEE Transactions on Software Engineering SE-10.4, pp. 438–444.
doi: 10.1109/TSE.1984.5010257.

El-Hajj, Rehab and Sarah Nadi (2020). “LibComp: An IntelliJ Plugin for Com-
paring Java Libraries”. In: ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE). Virtual Event, USA, 1591–1595. isbn: 9781450370431.

Erhabor, Daniel (2022). “Measuring the Performance of Code Produced with
GitHub Copilot”. MA thesis. University of Waterloo.

ESLint (2023). Find and fix problems in your JavaScript code - ESLint - Plug-
gable JavaScript Linter. url: https://eslint.org/.

Fraser, Gordon and Andrea Arcuri (2011). “Evosuite: automatic test suite gen-
eration for object-oriented software”. In: Proceedings of the 19th ACM SIG-
SOFT symposium and the 13th European conference on Foundations of soft-
ware engineering, pp. 416–419.

Fry, Zachary P, Bryan Landau, and Westley Weimer (2012). “A human study of
patch maintainability”. In: Proceedings of the 2012 International Symposium
on Software Testing and Analysis, pp. 177–187.

Ginelli, Davide, Matias Martinez, Leonardo Mariani, and Martin Monperrus
(2022). “A comprehensive study of code-removal patches in automated pro-
gram repair”. In: Empirical Software Engineering 27.4, p. 97. doi: 10.1007
/s10664-021-10100-7. url: https://doi.org/10.1007/s10664-021-10
100-7.

https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1145/1370175.1370194
https://doi.org/10.1145/1370175.1370194
https://doi.org/10.1145/1370175.1370194
https://doi.org/10.1109/ICSE43902.2021.00057
https://doi.org/10.1109/ICSE43902.2021.00057
https://doi.org/10.1109/TSE.1984.5010257
https://eslint.org/
https://doi.org/10.1007/s10664-021-10100-7
https://doi.org/10.1007/s10664-021-10100-7
https://doi.org/10.1007/s10664-021-10100-7
https://doi.org/10.1007/s10664-021-10100-7

126 Bibliography

GitHub (2023). GitHub Copilot - Your AI pair programmer. url: https://gi
thub.com/features/copilot.

Gu, Xiaodong, Hongyu Zhang, and Sunghun Kim (2018). “Deep code search”.
In: Proceedings of the International Conference on Software Engineering
(ICSE). IEEE, pp. 933–944.

Hanford, Kenneth V. (1970). “Automatic generation of test cases”. In: IBM
Systems Journal 9.4, pp. 242–257.

Harrand, Nicolas, Simon Allier, Marcelino Rodriguez-Cancio, Martin Monper-
rus, and Benoit Baudry (2019). “A journey among Java neutral program
variants”. In: Genetic Programming and Evolvable Machines 20.4, pp. 531–
580. doi: 10.1007/s10710-019-09355-3. url: https://doi.org/10.100
7/s10710-019-09355-3.

Heinemann, Lars, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel,
and Maximilian Irlbeck (2011). “On the extent and nature of software reuse
in open source java projects”. In: International Conference on Software
Reuse. Springer, pp. 207–222.

Horton, Eric and Chris Parnin (2018). “Gistable: Evaluating the executability
of python code snippets on github”. In: 2018 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, pp. 217–227.

Imai, Saki (2022). “Is GitHub copilot a substitute for human pair-programming?
An empirical study”. In: Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings, pp. 319–321.

Jansen, Bernard J, Amanda Spink, and Tefko Saracevic (2000). “Real life, real
users, and real needs: a study and analysis of user queries on the web”. In:
Information processing & management 36.2, pp. 207–227.

Jaworski, Mateusz and Dariusz Piotrkowski (2023). “Study of software develop-
ers’ experience using the Github Copilot Tool in the software development
process”. In: arXiv preprint arXiv:2301.04991.

Ji, Ziwei, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko
Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung (2023). “Survey of
hallucination in natural language generation”. In: ACM Computing Surveys
55.12, pp. 1–38.

Ji, Ziwei, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko
Ishii, Yejin Bang, Andrea Madotto, and Pascale Fung (2022). “Survey of
hallucination in natural language generation”. In: ACM Computing Surveys.

Jupyter (2020). url: https://jupyter.org/.
Kip (2009). Best way to represent a fraction in Java? — stackoverflow.com. ht

tps://stackoverflow.com/a/474612/13988074. [Accessed 30-Mar-2023].
Kitchenham, Barbara and Shari Pfleeger (Jan. 2008). “Personal Opinion Sur-

veys”. In: pp. 63–92. isbn: 978-1-84800-043-8. doi: 10.1007/978-1-84800
-044-5_3.

Kula, Raula Gaikovina, Ali Ouni, Daniel M German, and Katsuro Inoue (2017).
“On the impact of micro-packages: An empirical study of the npm javascript
ecosystem”. In: arXiv:1709.04638.

Kula, Raula Gaikovina and Christoph Treude (2022). “In war and peace: the
impact of world politics on software ecosystems”. In: Proceedings of the 30th

https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-019-09355-3
https://jupyter.org/
https://stackoverflow.com/a/474612/13988074
https://stackoverflow.com/a/474612/13988074
https://doi.org/10.1007/978-1-84800-044-5_3
https://doi.org/10.1007/978-1-84800-044-5_3

Bibliography 127

ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pp. 1600–1604.

Lajkó, Márk, Viktor Csuvik, and László Vidács (2022). “Towards JavaScript
program repair with Generative Pre-trained Transformer (GPT-2)”. In: 2022
IEEE/ACM International Workshop on Automated Program Repair (APR),
pp. 61–68. doi: 10.1145/3524459.3527350. url: https://doi.org/10.1
145/3524459.3527350.

Larios Vargas, Enrique, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios (2020). “Selecting third-party libraries: The practi-
tioners’ perspective”. In: ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE), pp. 245–256.

Lawrence, Lizzy (2022). ’You’re reading my mind’: GitHub’s AI coder amazes
(and terrifies) developers. https://www.protocol.com/workplace/githu
b-copilot-ai-developers.

Lazzarini Lemos, Otávio Augusto, Sushil Krishna Bajracharya, and Joel Ossher
(2007). “Codegenie: a tool for test-driven source code search”. In: Companion
to the 22nd ACM SIGPLAN conference on Object-oriented programming
systems and applications companion, pp. 917–918.

Le Goues, Claire, Westley Weimer, and Stephanie Forrest (2012). “Represen-
tations and Operators for Improving Evolutionary Software Repair”. In:
Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’12. Philadelphia, Pennsylvania, USA: Association
for Computing Machinery, 959–966. isbn: 9781450311779. doi: 10.1145/2
330163.2330296. url: https://doi.org/10.1145/2330163.2330296.

Licorish, Sherlock A. and Markus Wagner (2022a). “Combining GIN and PMD
for Code Improvements”. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). Boston, Massachusetts, 790–793.

Licorish, Sherlock A. and Markus Wagner (2022b). “Dissecting Copy/Delete/Re-
place/Swap Mutations: Insights from a GIN Case Study”. In: Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO). GECCO
’22. Boston, Massachusetts: Association for Computing Machinery, 1940–1945.
isbn: 9781450392686. doi: 10.1145/3520304.3533970. url: https://doi
.org/10.1145/3520304.3533970.

Lim, W. C. (Sept. 1994). “Effects of reuse on quality, productivity, and eco-
nomics”. In: IEEE Software 11.5, pp. 23–30. issn: 0740-7459. doi: 10.1109
/52.311048.

Lipow, Myron (1982). “Number of faults per line of code”. In: IEEE Transactions
on software Engineering 4, pp. 437–439.

Liu, Jiakun, Sebastian Baltes, Christoph Treude, David Lo, Yun Zhang, and
Xin Xia (2021). “Characterizing search activities on stack overflow”. In: Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pp. 919–931.

Lo, David, Nachiappan Nagappan, and Thomas Zimmermann (2015). “How
Practitioners Perceive the Relevance of Software Engineering Research”. In:

https://doi.org/10.1145/3524459.3527350
https://doi.org/10.1145/3524459.3527350
https://doi.org/10.1145/3524459.3527350
https://www.protocol.com/workplace/github-copilot-ai-developers
https://www.protocol.com/workplace/github-copilot-ai-developers
https://doi.org/10.1145/2330163.2330296
https://doi.org/10.1145/2330163.2330296
https://doi.org/10.1145/2330163.2330296
https://doi.org/10.1145/3520304.3533970
https://doi.org/10.1145/3520304.3533970
https://doi.org/10.1145/3520304.3533970
https://doi.org/10.1109/52.311048
https://doi.org/10.1109/52.311048

128 Bibliography

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering. ESEC/FSE 2015. New York, NY, USA: Association for Computing
Machinery, 415–425. isbn: 9781450336758. doi: 10.1145/2786805.278680
9. url: https://doi.org/10.1145/2786805.2786809.

Mahajan, Sonal, Negarsadat Abolhassani, and Mukul Prasad (Nov. 2020). “Rec-
ommending stack overflow posts for fixing runtime exceptions using failure
scenario matching”. In: pp. 1052–1064. doi: 10.1145/3368089.3409764.

Makyen (2023). Temporary policy: ChatGPT is banned — meta.stackoverflow.com.
https://meta.stackoverflow.com/questions/421831/temporary-poli
cy-chatgpt-is-banned. [Accessed 30-Mar-2023].

Mastropaolo, Antonio, Luca Pascarella, Emanuela Guglielmi, Matteo Ciniselli,
Simone Scalabrino, Rocco Oliveto, and Gabriele Bavota (2023). “On the
Robustness of Code Generation Techniques: An Empirical Study on GitHub
Copilot”. In: arXiv preprint arXiv:2302.00438.

McIlroy, M Douglas, J Buxton, Peter Naur, and Brian Randell (1968). “Mass-
produced software components”. In: Proceedings of the 1st international con-
ference on software engineering, Garmisch Pattenkirchen, Germany, pp. 88–
98.

Meldrum, Sarah, Sherlock A Licorish, Caitlin A Owen, and Bastin Tony Roy
Savarimuthu (2020). “Understanding stack overflow code quality: A recom-
mendation of caution”. In: Science of Computer Programming 199, p. 102516.

Melo, L., I. S. Wiese, and M. d’Amorim (2019). “Using Docker to Assist Q A
Forum Users”. In: IEEE Transactions on Software Engineering (TSE).

Microsoft (2023a). ts-fix. url: https://github.com/microsoft/ts-fix.
Microsoft (2023b). TypeScript: JavaScript With Syntax For Types. url: https

://www.typescriptlang.org/.
Microsoft (2023c). Working with JavaScript in Visual Studio Code. url: https

://code.visualstudio.com/docs/nodejs/working-with-javascript.
Mirhosseini, Samim and Chris Parnin (2020). “Docable: Evaluating the Exe-

cutability of Software Tutorials”. In: ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). Virtual Event, USA, 375–385.

Mockus, Audris (2007). “Large-scale code reuse in open source software”. In:
First International Workshop on Emerging Trends in FLOSS Research and
Development (FLOSS’07: ICSE Workshops 2007). IEEE, pp. 7–7.

Mohagheghi, Parastoo, Reidar Conradi, Ole M Killi, and Henrik Schwarz (2004).
“An empirical study of software reuse vs. defect-density and stability”. In:
Proceedings. 26th International Conference on Software Engineering. IEEE,
pp. 282–291.

Morgan, Rachael (2015). “Analysing and comparing problem landscapes for
black-box optimization via length scale”. PhD thesis.

Nguyen, Nhan and Sarah Nadi (2022). “An empirical evaluation of GitHub copi-
lot’s code suggestions”. In: Proceedings of the 19th International Conference
on Mining Software Repositories, pp. 1–5.

Ocariza Jr, Frolin S, Karthik Pattabiraman, and Ali Mesbah (2014). “Vejovis:
Suggesting fixes for JavaScript faults”. In: Proceedings of the 36th Interna-
tional Conference on Software Engineering, pp. 837–847.

https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1145/2786805.2786809
https://doi.org/10.1145/3368089.3409764
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned
https://meta.stackoverflow.com/questions/421831/temporary-policy-chatgpt-is-banned
https://github.com/microsoft/ts-fix
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://code.visualstudio.com/docs/nodejs/working-with-javascript
https://code.visualstudio.com/docs/nodejs/working-with-javascript

Bibliography 129

OpenAI, Wojciech Zaremba, and Greg Brockman (2021). OpenAI Codex. url:
https://openai.com/blog/openai-codex.

Pacheco, Carlos, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball (2007).
“Feedback-directed random test generation”. In: 29th International Confer-
ence on Software Engineering (ICSE’07). IEEE, pp. 75–84.

Pearce, H., B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri (May 2022).
“Asleep at the Keyboard? Assessing the Security of GitHub Copilot’s Code
Contributions”. In: 2022 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, pp. 980–994. doi: 10.11
09/SP46214.2022.00057. url: https://doi.ieeecomputersociety.org
/10.1109/SP46214.2022.00057.

Peng, Sida, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer (2023). “The
impact of ai on developer productivity: Evidence from github copilot”. In:
arXiv preprint arXiv:2302.06590.

Petke, Justyna, Brad Alexander, Earl T. Barr, Alexander E. I. Brownlee, Markus
Wagner, and David R. White (2019). “A Survey of Genetic Improvement
Search Spaces”. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion. GECCO ’19. Prague, Czech Republic: As-
sociation for Computing Machinery, 1715–1721. isbn: 9781450367486. doi:
10.1145/3319619.3326870. url: https://doi.org/10.1145/3319619.3
326870.

Pham, Tri Minh Triet and Jinqiu Yang (2020). “The secret life of commented-
out source code”. In: Proceedings of the 28th International Conference on
Program Comprehension, pp. 308–318.

PMD (2023). PMD. url: https://pmd.github.io/.
Ponzanelli, Luca, Alberto Bacchelli, and Michele Lanza (2013). “Seahawk: Stack

overflow in the ide”. In: Proceedings of the International Conference on Soft-
ware Engineering (ICSE). IEEE, pp. 1295–1298.

Ponzanelli, Luca, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza (2014). “Prompter: A self-confident recommender system”.
In: IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 577–580.

Project, NLTK (2023). NLTK :: Natural Language Toolkit — nltk.org. https:
//www.nltk.org/. [Accessed 30-Mar-2023].

Proksch, Sebastian, Veronika Bauer, and Gail C. Murphy (2015). “How to Build
a Recommendation System for Software Engineering”. In: Software Engi-
neering: International Summer Schools, LASER 2013-2014, Elba, Italy, Re-
vised Tutorial Lectures. Ed. by Bertrand Meyer and Martin Nordio. Springer,
pp. 1–42. isbn: 978-3-319-28406-4.

Puryear, Ben and Gina Sprint (2022). “Github copilot in the classroom: learning
to code with AI assistance”. In: Journal of Computing Sciences in Colleges
38.1, pp. 37–47.

Ragkhitwetsagul, Chaiyong, Jens Krinke, Matheus Paixao, Giuseppe Bianco,
and Rocco Oliveto (2021). “Toxic Code Snippets on Stack Overflow”. In:
IEEE Transactions on Software Engineering 47.3, pp. 560–581. doi: 10.11
09/TSE.2019.2900307.

https://openai.com/blog/openai-codex
https://doi.org/10.1109/SP46214.2022.00057
https://doi.org/10.1109/SP46214.2022.00057
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00057
https://doi.ieeecomputersociety.org/10.1109/SP46214.2022.00057
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3319619.3326870
https://pmd.github.io/
https://www.nltk.org/
https://www.nltk.org/
https://doi.org/10.1109/TSE.2019.2900307
https://doi.org/10.1109/TSE.2019.2900307

130 Bibliography

Rainer, Austen and Claes Wohlin (2021). Recruiting credible participants for
field studies in software engineering research. doi: 10.48550/ARXIV.2112
.14186. url: https://arxiv.org/abs/2112.14186.

Reid, Brittany, Earl Barr, Markus Wagner, and Christoph Treude (2023a).
Copy-Paste vs. Code Generation: Contrasting Stack Overflow and GitHub
Copilot. Being revised for submission to IEEE Transactions on Software
Engineering.

Reid, Brittany, Marcelo d’Amorim, Markus Wagner, and Christoph Treude
(2023b). “NCQ: Code Reuse Support for Node.js Developers”. In: IEEE
Transactions on Software Engineering 49.5, pp. 3205–3225. doi: 10.110
9/TSE.2023.3248113.

Reid, Brittany, Christoph Treude, and Markus Wagner (2020). “Optimising
the Fit of Stack Overflow Code Snippets into Existing Code”. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference (GECCO),
1945–1953.

Reid, Brittany, Christoph Treude, and Markus Wagner (2023). “Using the Type-
Script compiler to fix erroneous Node.js snippets”. To appear in: 23rd IEEE
International Working Conference on Source Code Analysis and Manipula-
tion.

Reid, Brittany, Markus Wagner, Marcelo d’Amorim, and Christoph Treude
(2022). Software Engineering User Study Recruitment on Prolific: An Expe-
rience Report. doi: 10.48550/ARXIV.2201.05348. url: https://arxiv.o
rg/abs/2201.05348.

Sandewall, Erik (1978). “Programming in an Interactive Environment: the “Lisp”
Experience”. In: ACM Computing Surveys (CSUR) 10.1, pp. 35–71.

Sobania, Dominik, Martin Briesch, and Franz Rothlauf (2022). “Choose your
programming copilot: a comparison of the program synthesis performance
of github copilot and genetic programming”. In: Proceedings of the Genetic
and Evolutionary Computation Conference, pp. 1019–1027.

Sojer, Manuel and Joachim Henkel (2010). “Code reuse in open source software
development: Quantitative evidence, drivers, and impediments”. In: Journal
of the Association for Information Systems 11.12, pp. 868–901.

Stack Exchange (2023). Stack Exchange Data Explorer. url: https://data.s
tackexchange.com/.

Steinmacher, Igor, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa (2016). “Overcoming open source project entry barriers with a portal
for newcomers”. In: Proceedings of the International Conference on Software
Engineering (ICSE), pp. 273–284.

Storey, Margaret-Anne, Christoph Treude, Arie van Deursen, and Li-Te Cheng
(2010). “The impact of social media on software engineering practices and
tools”. In: Proceedings of the FSE/SDP workshop on Future of software en-
gineering research, pp. 359–364.

Tal, Liran and Simon Maple (2020). npm passes the 1 millionth package mile-
stone! What can we learn? url: https://snyk.io/blog/npm-passes-the
-1-millionth-package-milestone-what-can-we-learn/.

https://doi.org/10.48550/ARXIV.2112.14186
https://doi.org/10.48550/ARXIV.2112.14186
https://arxiv.org/abs/2112.14186
https://doi.org/10.1109/TSE.2023.3248113
https://doi.org/10.1109/TSE.2023.3248113
https://doi.org/10.48550/ARXIV.2201.05348
https://arxiv.org/abs/2201.05348
https://arxiv.org/abs/2201.05348
https://data.stackexchange.com/
https://data.stackexchange.com/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/
https://snyk.io/blog/npm-passes-the-1-millionth-package-milestone-what-can-we-learn/

Bibliography 131

Terragni, Valerio, Yepang Liu, and Shing-Chi Cheung (2016). “CSNIPPEX: au-
tomated synthesis of compilable code snippets from Q&A sites”. In: Proceed-
ings of the 25th international symposium on software testing and analysis,
pp. 118–129.

Tonella, Paolo (2004). “Evolutionary testing of classes”. In: ACM SIGSOFT
Software Engineering Notes 29.4, pp. 119–128.

Tufano, Michele, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan (2022).
“Generating accurate assert statements for unit test cases using pretrained
transformers”. In: Proceedings of the 3rd ACM/IEEE International Confer-
ence on Automation of Software Test, pp. 54–64.

Umarji, Medha, Susan Elliott Sim, and Crista Lopes (2008). “Archetypal internet-
scale source code searching”. In: IFIP International Conference on Open
Source Systems. Springer, pp. 257–263.

Vaithilingam, Priyan, Tianyi Zhang, and Elena L Glassman (2022). “Expecta-
tion vs. experience: Evaluating the usability of code generation tools powered
by large language models”. In: Chi conference on human factors in computing
systems extended abstracts, pp. 1–7.

Venkatesh, Viswanath and Fred D Davis (2000). “A theoretical extension of the
technology acceptance model: Four longitudinal field studies”. In: Manage-
ment Science 46.2, pp. 186–204.

W3Techs (2020). Usage Statistics of Node.js. url: https://w3techs.com/tec
hnologies/details/ws-nodejs.

Wang, Junjie, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang (2023). “Software Testing with Large Language Model: Survey, Land-
scape, and Vision”. In: arXiv preprint arXiv:2307.07221.

Wong, Dakota, Austin Kothig, and Patrick Lam (2022). “Exploring the Verifia-
bility of Code Generated by GitHub Copilot”. In: arXiv preprint arXiv:2209.01766.

Xu, Frank F., Bogdan Vasilescu, and Graham Neubig (Mar. 2022). “In-IDE
Code Generation from Natural Language: Promise and Challenges”. In:
Transactions on Software Engineering and Methodology (TOSEM) 31.2. issn:
1049-331X. doi: 10.1145/3487569. url: https://doi.org/10.1145/348
7569.

Yang, Di, Aftab Hussain, and Cristina Videira Lopes (2016). “From Query to
Usable Code: An Analysis of Stack Overflow Code Snippets”. In: Proceedings
of the 13th International Conference on Mining Software Repositories. MSR
’16. New York, NY, USA: Association for Computing Machinery, 391–402.
isbn: 9781450341868. doi: 10.1145/2901739.2901767. url: https://doi
.org/10.1145/2901739.2901767.

Yetistiren, Burak, Isik Ozsoy, and Eray Tuzun (2022). “Assessing the quality of
GitHub copilot’s code generation”. In: Proceedings of the 18th International
Conference on Predictive Models and Data Analytics in Software Engineer-
ing, pp. 62–71.

Yu, Sehun, Dongha Lee, and Hwanjo Yu (2021). “Convolutional neural net-
works with compression complexity pooling for out-of-distribution image
detection”. In: Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pp. 2435–2441.

https://w3techs.com/technologies/details/ws-nodejs
https://w3techs.com/technologies/details/ws-nodejs
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3487569
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2901739.2901767
https://doi.org/10.1145/2901739.2901767

132 Bibliography

Zhang, Beiqi, Peng Liang, Xiyu Zhou, Aakash Ahmad, and Muhammad Waseem
(2023). “Practices and Challenges of Using GitHub Copilot: An Empirical
Study”. In: arXiv preprint arXiv:2303.08733.

Zhang, Hongyu, Anuj Jain, Gaurav Khandelwal, Chandrashekhar Kaushik,
Scott Ge, and Wenxiang Hu (2016). “Bing developer assistant: improving
developer productivity by recommending sample code”. In: International
Symposium on the Foundations of Software Engineering (FSE), pp. 956–
961.

Ziegler, Albert, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian (2022). “Pro-
ductivity assessment of neural code completion”. In: Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming, pp. 21–
29.

	Abstract
	Declaration of Authorship
	Acknowledgements
	Introduction
	Background
	Research Problem and Hypothesis
	Motivating Example
	Search and Evaluation
	Integration
	Testing

	Justifications for the Research
	Overview of Thesis Structure
	Related Literature

	Literature Review
	Empirical Studies on Code Reuse
	Search
	Third-Party Library Selection
	Code Snippet Search
	Code Synthesis

	Integration
	Code Executability
	Static Analysis
	Automatic Code Correction
	Code Deletion

	Testing
	Conclusion

	Connecting Developers to Libraries and Code Examples
	Introduction
	Illustrative Example
	Typical problem solving in Node.js
	Problem solving in NCQ

	Dataset
	Package Data
	Code Snippet Extraction

	Survey
	Survey Design
	Survey Results

	Overview
	NCQRetrieval
	REPL
	Editor Mode
	Package Search
	Code Snippet Search

	NCQRetrieval Evaluation
	Experimental Design
	Programming Tasks
	Baseline
	Participants
	Assignment
	User Session
	Questions

	Answering RQ1
	Impact on time to complete each task
	Time to install first and last package

	Answering RQ2
	Participant perception of features
	What was the general participant perception of NCQRetrieval?

	NCQRetrieval Limitations
	NCQ
	Improved Package Search
	Code Correction
	Additional Features

	NCQ Evaluation
	Experimental Design
	Baseline
	Participants
	Questions

	Answering RQ3
	Impact on time to complete each task
	Time to install first and last package

	Answering RQ4
	Participant perceptions of features
	What was the general participant perception of NCQ?

	Answering RQ5

	Discussion
	Threats to Validity
	Conclusion and Future Work

	Correcting Code Examples
	Introduction
	Motivating Example
	Approach
	Identifying Errors
	Targeted Fixes
	TypeScript Codefixes
	Line Deletion

	Dataset
	NPM Snippets
	Stack Overflow Edits

	Evaluation
	What errors does TypeScript detect in NPM documentation?
	How does error detection differ between ESLint and TypeScript?
	What is the impact of NCC on the set of NPM snippets?
	How does NCC compare to NCQ's code corrections?
	How does NCC compare to manual fixes?

	Threats and Limitations
	Conclusion and Future Work

	Generating Code Examples
	Introduction
	Research Questions
	Dataset
	Results
	RQ1.1: Number of Snippets Returned
	RQ1.2: Snippet Diversity
	RQ2.1: Snippet Length
	RQ2.2: Comments in Snippets
	RQ2.3: Snippet API Usage
	RQ2.4: Snippet Errors
	RQ2.5: Snippet Relevance
	RQ3.1 Keyword Queries
	RQ3.2 Method Signature Queries
	Threats to Validity

	Conclusion

	Conclusion and Future Work
	Empirical Studies on Code Correction
	Empirical Study of GitHub Copilot
	AI Assisted Code Correction and Integration of Snippets
	Automatically Generated Test Cases
	Investigating Industry Perceptions of Open Source Software Libraries

	Bibliography

