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Abstract—Most online code snippets do not run. This means
that developers looking to reuse code from online sources must
manually find and fix errors. We present an approach for
automatically evaluating and correcting errors in Node.js code
snippets: Node Code Correction (NCC). NCC leverages the
ability of the TypeScript compiler to generate errors and inform
code corrections through the combination of TypeScript’s built-
in codefixes, our own targeted fixes, and deletion of erroneous
lines. Compared to existing approaches using linters, our findings
suggest that NCC is capable of detecting a larger number of
errors per snippet and more error types, and it is more efficient
at fixing snippets. We find that 73.7% of the code snippets in NPM
documentation have errors; with the use of NCC’s corrections,
this number was reduced to 25.1%. Our evaluation confirms that
the use of the TypeScript compiler to inform code corrections is
a promising strategy to aid in the reuse of code snippets from
online sources.

I. INTRODUCTION

Most code snippets online do not run; existing work has
shown that only 15.2% of Node.js snippets in NPM package
documentation are runnable [1]. Because software developers
frequently reuse code from online sources [2], they often need
to dedicate time to fixing errors. This introduces challenges
when using third-party libraries: examples in documentation
are intended to demonstrate usage and non-working snippets
can present a barrier to getting started.

Because code snippets are not full, runnable programs with
test cases, existing work in automating the detection and
fixing of errors has primarily focused on static analysis [3]-
[8]. Code reuse tools such as NLP2TestableCode [3] and
NCQ [5] combine error detection with heuristic fixes and line
deletion to aid developers in reusing snippets. This use of line
deletion aims to reduce snippets to an optimal form through
a simple deletion operation, looking at errors to determine if
the change should be ‘accepted’. Static analysis is also useful
for measuring the quality of code; existing code reuse tools
have made use of parsers, linters and compilers to report errors
and find the ‘best’ snippet for a given search query [3], [5].
Additionally, such tools can provide insights on the quality of
online code in general: for example, Yang et al. [4] looked at
the usability of Stack Overflow snippets via static analysis.

Research in Java leverages the compiler for error detection
and correction [3], [9], but JavaScript(and thus the Node.js
runtime environment), is an interpreted language that lacks
such a compiler. Similar work has instead relied on parsers and
linters [4]-[6]. For example, NCQ [5], a command-line REPL
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(Read-Eval-Print-Loop) programming environment, which au-
tomates the process of reusing code snippets from NPM
package documentation, uses ESLint [10] to report errors, and
increases the number of snippets without errors from 54.8% to
94.0%. However, these tools serve a different purpose than the
compiler (formatting code or generating ASTS), so the errors
reported may be more limited; for example, the majority of
ESLint rules are stylistic or best practice, not programming
errors that affect runnability [6]. Additionally, both ESLint
and the SpiderMonkey parser report only a single error if they
fail to parse. ESLint needs to successfully parse a snippet to
create an AST and run its rule detection. Unlike a compiler,
ESLint does not do any type checking. This reveals the need
for a better way to evaluate errors in Node.js code.

We investigate how effective the TypeScript [11] compiler
is for reporting and fixing errors in Node.js snippets, which
is a novel contribution to an area that has otherwise relied
on linters and parsers. While TypeScript is a superset of
JavaScript with static typing, the compiler is used in VS-
Code to provide error highlighting and fix suggestions for
JavaScript as well [12], suggesting it may be more useful
for error detection and correction than existing approaches.
The existing in-editor implementation requires a degree of
manual interaction to handle errors; we take TypeScript’s fix
suggestions and apply them automatically on given snippets.
Furthermore, we implement a limited set of heuristic fixes
targeting the most common errors, leveraging TypeScript’s
ability to generate ASTs and provide type information. We
present our approach, Node Code Correction (NCC), which
adapts NCQ’s corrections to use the TypeScript compiler in
place of ESLint, including targeted fixes and line deletion. We
run both approaches with a dataset of more than two million
NPM code snippets and then evaluate NCC against a dataset
of Stack Overflow snippet edit pairs representing manual error
corrections over time. We report the following findings:

* The TypeScript compiler reports more errors than ESLint:
on average 6.8 vs 1.3 errors per snippet. ESLint reports a
single error and no AST for 47.46% of erroneous snippets.

* TypeScript enables NCC to improve the rate of error-free
snippets by 184.67% compared to 72.60% for NCQ, with
less empty snippets (7.41% vs 14.33% of the dataset).

* ESLint’s built-in fixes had a negligible impact on NCQ’s
code corrections; only 1 snippet was made error-free. In



contrast, TypeScript’s codefixes corrected 79,613 snippets.

* 1,099 (6.88%) of 15,969 Stack Overflow snippets were
manually made error free between versions; in comparison,
NCC was able to correct 46.77%. Of this 1,099 that were
fixed manually, NCC could fix 66.06%.

These results provide evidence that the TypeScript compiler
can be useful in automatically identifying and fixing errors, to
help reuse online code snippets. We conjecture that further
improvement to heuristic fixes can increase the number of
corrected snippets. Our approach and related data are available
at: https://doi.org/10.5281/zenodo.8272874

II. MOTIVATING EXAMPLE

A developer wants to read some data from a URL in
Node.js. Let us say that the developer comes across the snippet
in Figure 1 (an unedited Stack Overflow snippet from our
dataset) while searching on Google. Like many snippets found
online, it has errors.

http.get (url, function(res) {
var data = '’;
res.on(’data’, function (chunk) {data+= chunk;});
res.on (’end’, function () {
console.log ("BODY: " + data);})
}).on("error’, function(e) {
console.log ("Got error:
}i
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" + e.message); });

Figure 1. Example code snippet from Stack Overflow answer 45582298.

The developer pastes the snippet into their file, but it fails
to run with the error ‘SyntaxError: Unexpected token ’}”, due
to a hanging bracket. Furthermore, the TypeScript compiler
identifies a number of other issues with the snippet: the
identifier url, and http are also undefined. As we find in
Section VI, these are common errors, as example code often
omits parts to simplify the snippet.

+ const http = require ("http");
+ var url = "Your Value Here"; // Suggested Type:
+ string | RequestOptions | URL
http.get (url, function(res) {

var data = '’;

res.on (’data’, function (chunk) {data+= chunk;});

res.on (’end’, function () {

console.log ("BODY: " + data);})

}).on(’"error’, function(e) {
10 console.log ("Got error:
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" + e.message); });

Figure 2. Code snippet after NCC’s corrections.

However, running NCC before using the snippet results in
a snippet that reports no errors, as shown in Figure 2. Using
TypeScript, NCC detects these errors before without needing
to run untrusted code. Using custom fixes, NCC adds the
missing http require statement; then for the undefined url,
a placeholder value is declared with suggested types to guide
the developer. Line deletion then removes the hanging bracket.
From this snippet, the developer can make the necessary
changes needed to make the snippet runnable.

We can compare these changes on the original, erroneous
version of the snippet, to the manually fixed snippet from
our dataset. Similarly, the manually corrected snippet adds the
missing url variable, which is a string URL. It also adds a

var https = require (’https’);

1] +
2| + var url = ’"https://www.alphavantage.co/query...’;
3| + exports.handler = function

4\

5

https.get (url, function(res) {

7

1
(event, context) ({

6l };

Figure 3. Excerpt of the manually corrected snippet.

require, but changes the library to https to match the URL.
To correct the hanging bracket, the code has been wrapped in
an exported function.

In contrast, ESLint reports only a single parsing error for
the original snippet, and so the only change is to comment
out the bracket. This motivating example illustrates how the
capabilities of the TypeScript compiler can be used to help
with corrections that benefit developer workflows.

III. RELATED WORK

While many automated code reuse tools allow developers to
find and use snippets online from within their programming
environment, developers still need to spend time correcting
them when they do not work. Node Code Correction combines
ideas from three areas of work into one tool, in order to help
developers reuse code from online: 1) error detection via static
analysis; 2) code correction and 3) code deletion. We discuss
existing work in these areas, both in the limited JavaScript and
Node.js space, and in other languages.

A. Static Analysis

Previous work has looked at error detection in JavaScript
and Node.js, using parsers [4], linters [5], [6] or runtime
errors [1], [4]. The benefit of static analysis is that it can report
multiple errors, is typically fast, and that code can be evaluated
without running it; this is especially useful when most online
snippets do not run [1], [4]. Additionally, it is undesirable
for a code reuse tool to run arbitrary code from online, when
snippets can be malicious or contain vulnerabilities. For these
reasons, static analysis can be useful for providing information
about large sets of code, or for on-demand use in an automated
code reuse pipeline. For example, tools such as NCQ [5]
and NLP2TestableCode [3] use errors to inform fixes and
recommend the highest quality snippets first. However, most of
the issues that linters like ESLint report are stylistic; Campos
et al. ran the standard ESLint configuration on JavaScript
code snippets mined from Stack Overflow and found that no
snippets were free of rule violations, but that 163 rules could
be characterised as ‘stylistic issues’ or ‘best practice’ [6].

Similar work in Java has made use of static analysis tools
like PMD [13] and compilers to detect and correct errors in
code snippets [3], [7]-[9]. The process of converting code into
another lower-level language is more complicated than just
generating an AST (compilers parse code as only one step of
the compilation process), meaning that they report errors that
parsing alone does not. Because Java code must be compiled
before it can be run, the ability to compile a snippet is a
useful measure of quality in a reuse context — code that does
not compile is thus not runnable. Many compilers, such as
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the Eclipse Java compiler and the TypeScript compiler, are
designed to report multiple errors and are used to report error
information within an IDE. To the best of our knowledge,
no existing work attempts to use the TypeScript compiler
to evaluate and fix errors in Node.js code. Based on these
observations, we devise NCC to fill this gap.

B. Automatic Code Correction

Much work on fixing code has focused on software bugs in
runnable programs, evaluated via test cases. In contrast to this,
code correction in the context of code reuse deals with frag-
mented, often unrunnable code, where these approaches cannot
be applied. To solve the problem of correcting unrunnable
snippets, existing tools rely on static analysis to identify errors
and inform heuristic fixes. CSnippEx [9], for Java, employs an
existing suite of fixes from Eclipse, while NCQ [5] does the
same in Node.js using ESLint’s fixes. NLP2TestableCode [3]
in Java uses a set of custom heuristic fixes, and is able
to insert missing import statements and variable definitions.
Jigsaw [14], another Java tool, allows developers to supply a
method to integrate and a destination class or function, then
extracts structural information to make integration changes.
Where it cannot automatically fix integration errors, it inserts
comments and highlights parts of code for developer attention.

Besides NCQ, other work in JavaScript and Node.js looks
at repairing software bugs in runnable code. Vejovis [15] auto-
matically suggests repairs for DOM-based JavaScript faults to
developers, but these repairs require runnable code and are not
applicable for Node.js. The use of AI models to fix code is also
of interest: Lajko et al. [16] look at the use of the GPT-2 model
to fix software bugs; after training the model to fix JavaScript
bugs, they found that it did so correctly in most cases. Al tools
that generate code snippets, such as GitHub Copilot [17], a
plug-in for VSCode that uses OpenAI’s more advanced GPT-3-
based Codex [18], are able to generate snippets that match the
surrounding context, eliminating the need to integrate snippets.
However, there is some concern about the quality of the output
of these systems, with regard to bugs, vulnerabilities, and
correctness for given queries [19], [20]. NCC aims to build on
existing work on correcting errors in Node.js code snippets,
by combining TypeScript’s existing fix suite, with custom
heuristic fixes, as well as utilising comments where developer
intervention is still needed. Additionally, we hypothesise that
better error detection using a compiler will enable more
accurate error correction.

C. Code Deletion

Code deletion, for example, at the granularity of lines or
statements, is a unary operator that is easy to implement.
It also does not require any code analysis or synthesis and
can be a component of a more complex operation, such as
replacing a line with another. Therefore, code deletion is
typically included in studies related to code improvement [7],
[8], [21]-[24]. Often, these studies report errors that are fixed
(relative to a given test suite) by removing the offending code.

For the problem of correcting unrunnable code where test
cases cannot be used, line deletion, in combination with error
reporting, has previously been used as a solution. For example,
NLP2TestableCode [3], which is an Eclipse plug-in that assists
in reuse of Stack Overflow code, employs a line deletion
algorithm as the last step in a suite of fixes, using the Eclipse
compiler to provide error information. The NCQ code reuse
tool [5] implements a similar functionality for Node.js, using
ESLint to evaluate errors. Similarly, Licorish and Wagner [7]
combined static analysis with the Gin genetic improvement
framework [25] (which includes deletion operations, among
others) to improve Java code snippets on Stack Overflow. In
contrast to these works, we investigated the possibility of using
the TypeScript compiler to inform line deletions as just one
of the potential ways it could be used for code corrections.

IV. APPROACH

Code Corrections
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Figure 4. The NCC pipeline.

Node Code Correction (NCC) has four stages, illustrated in
Figure 4; 1) compilation to identify errors; 2) targeted fixes; 3)
TypeScript codefixes and finally 4) line deletion. Each snippet
is initially compiled to check for errors; then, for erroneous
snippets, the code correction process begins. First, a series of
heuristic custom fixes are attempted; if errors continue to exist,
then TypeScript’s builtin codefixes are applied where available.
Finally, line deletion is employed to handle remaining errors.
After any change, the code is compiled again to update the
error information. This section describes each aspect of NCC.

A. Identifying Errors

Identifying errors is the first step to correcting errors. To do
this, NCC uses the TypeScript compiler from version 4.9.4 of
the TypeScript package. To optimise compilation speed, the
TypeScript compiler is run programmatically and in-memory
for a given string of code, using a custom CompilerHost
that handles the interface between the compiler and the ‘file
system’. This custom CompilerHost stores the code string
as an in-memory sourceFile, instead of looking on the
file system. Furthermore, we cache any required files (such as



TypeScript definition files) between compiles. By default, the
TypeScript compiler will check all loaded files for errors, con-
siderably slowing down the compilation time, so we specify
only looking at our single input file. The TypeScript compiler
is then isolated from other code, by only allowing it to access
files in the ‘typescript’ and ‘@types/node’ folders that are
needed for TypeScript to function.

We configured the compiler with options to match a de-
fault v18.16.0 Node.js environment for example, we enabled
Node.js types and did not allow JSX (JavaScript XML) be-
cause the dataset is meant to be Node.js code only. To trigger
the TypeScript compiler’s JavaScript mode, the in-memory file
was named with a ‘js’ file ending. Due to the size of the
dataset, for this investigation of the entire NPM registry, we
do not try to install each snippet’s source package, though
the TypeScript compiler is capable of deriving additional
type information that could have enabled more accurate type
information. Additionally, the need to install packages for
each snippet would increase the time to fix, which is one of
the benefits of static analysis like this. We simply ignore the
‘Cannot find module’ error on require statements, and the
compiler will then continue to generate general Node.js errors.
On compilation, the compiler generates a list of diagnostics,
including error code, message, start location, and length. To
deal with rare cases where the compiler threw an error or never
finished compiling, we run the compiler in a separate process
with a timeout of 60 seconds.

B. Targeted Fixes

On the basis of our experimentation with prototype versions
of NCC, we devise a series of custom heuristic fixes that
address common errors that other stages cannot correct. Our
heuristics for identifying and correcting errors thus embody a
series of iterative enhancements that integrate lessons learned
from these early prototypes.

We created two fixes for the common error Cannot find
name, which occurs for undeclared variables. We identify
that the cause of the error is either a missing ‘require’ for
a package, or a variable not being defined. Our two fixes thus
are to insert the import or define a placeholder variable. We
leverage the TypeScript compiler’s ability to generate ASTSs
for even erroneous code to provide information about the
context and surrounding code, and to keep track of errors
that exist on the same line as each other. We ignore cases
of the Cannot find name error where it may be reported
for non-code (for example, terminal commands): in cases
of expression expectedand unexpected keyword
or identifier we presume that the code on that line has
additional issues, and we make no changes.

For missing require statements, we check if the identifier
could be an API usage, and then check if the name matches
to a built-in library. For these cases, we insert a require
statement. Undefined functions are ignored to allow Type-
Script’s codefixes to handle these cases instead. In other,
non-function, cases, we attempt to get the expected type
of the undeclared variable. That is: if the identifier is an

argument of a function, we check for the expected type from
the parent function. From here, we can insert a placeholder
string, number or array of strings or numbers. Where a type
cannot be determined, we default to a string. Additionally, for
more complex types, we default to a placeholder string with a
comment noting the suggested type. These placeholders serve
to move the snippet to a more ‘correct’ state, while indicating
where developer intervention may be needed. The motivating
example in Section II demonstrates a case in which both of
these fixes are applied. After applying a fix, we compile to
see if the changes do not increase the total number of errors;
if not, the change is kept.

C. TypeScript Codefixes

We employ TypeScript’s codefixes (the Quick Fix sugges-
tions that TypeScript can provide to an IDE, for example, when
integrated with VSCode) to automatically correct errors. Type-
Script codefixes require use of the LanguageService API,
not the compiler, but, similarly to the TypeScript compiler,
we speed up runs via in-memory objects and caching. Shar-
ing a DocumentRegistry object between runs, and only
updating the input ‘file’ for each snippet, gives considerable
speed benefits. TypeScript supports fixes for 1,190 of its 1,878
available error types.

We adapt the codefix procedure of the Microsoft ts—fix
tool [26], which automatically fixes errors in TypeScript
projects. For each error, a set of CodeFixActions is sup-
plied if they exist, each with its own set of changes that must
be made to the text. All possible changes are combined into a
list, sorted by the earliest start and then the smallest change.
Then, we filter the list to remove changes that would overlap
(i.e., affect the same part of the string), before applying them
to the text. Then we compile the code again to update the error
count.

D. Line Deletion

Line deletion is a commonly used technique to reduce errors
in code snippets [5], [7], [8], [21]-[24]. We adapt the NCQ line
deletion algorithm to work with the TypeScript compiler. The
deletion algorithm functions as illustrated in Algorithm 1, and
is run on snippets that still have errors after the codefix stage.
The algorithm attempts to find the ‘best’ snippet based on
error count, by deleting lines affected by errors. The ‘deletion’
occurs by commenting out the line, just like in NCQ; in a code
reuse situation these erroneous lines may still be useful to a
developer by providing additional context, and commented out
code can aid developers in fixing bugs, debugging and adding
features [27]. We prefer line deletion over statement deletion
for the issue of code fragments, as not all snippets are parsable.

First, the snippet S is compiled to find errors. If there are no
errors, the process stops there. If there are errors, the algorithm
starts with the first error and attempts to delete the associated
line. The new snippet is then re-evaluated, and if the error
count did not increase, the deletion is kept and the errorNo
variable is reset as the error list is now changed. If the change
made things worse, we revert the change and move on to the



Algorithm 1: Line Deletion Algorithm

Shest <— Initial snippet
// Step 1: Get errors
Stest.errors < Compile(Spest)
done < false
errorNo < 0
while done == false do
Scur'rent — Sbest
// Step 2a: Check if done
if errorNo >= Scurrent-errors.length then
| done « true
// Step 2b: Try delete error
else
Scurrent.DeleteLineFor(errorNo)
Scurrent-errors < Compile(Scurrent)
// Step 4a: Keep deletion
if Scurrent.errors <= Spest.Errors then
Sbest — Scurrent
errorNo < 0
// Step 4b: Try next error
else
| errorNo+ +
return Spest

next error. The loop ends when there are no errors or all errors
have been processed, and the algorithm returns the snippet
with the least errors it can produce. In some cases, snippets
are commented out completely (so-called ‘empty’ snippets) in
order to reduce the snippet to zero errors.

The major change from NCQ is that TypeScript reports
more than a single ‘failed here’ parsing error, unlike ESLint.
This means that NCC’s line deletion algorithm is capable of
trying multiple changes when one does not work. Furthermore,
because the mined dataset still contains some non-Node.js
snippets even after filtering, we handle additional edge cases
not shown in the algorithm based on the unexpected behaviour
of the TypeScript compiler. We ignore the previously discussed
crashing snippets. Additionally, it is possible for an error to
persist even on a commented-out line, so we check if the
line has been commented out and skip it. In cases where the
reported error location exceeds the actual snippet length, which
we interpret as a problem parsing the snippet, we terminate
the line deletion process.

V. DATASET

This section provides an overview of the dataset used to
evaluate the performance of the code correction tool. The
dataset consists of two main sources: NPM snippets and Stack
Overflow edits, each described in detail in their respective sub-
sections. ‘Snippet’ in both instances refers to code fragments
mined directly from either markdown or HTML, by looking
for code blocks. We do not attempt any combination of related
snippets in a single source, as developers and tools often treat
snippets as self-contained, even when that may not be true.

A. NPM Snippets

Reid et al. [5] originally ran NCQ’s code corrections over a
dataset of 2,161,911 code snippets mined from the NPM reg-
istry as of May 2021. The dataset contains snippets extracted

from markdown code blocks in the package READMEs.
Heuristics were employed to ensure the dataset was filtered
for only Node.js snippets, manually verified on a sample of
384 READMEs (confidence level 95%, confidence interval
5). However, non-JavaScript code snippets (including terminal
commands, TypeScript and JSX, a JavaScript extension used
for React) may still be present within the dataset.

For our evaluation, we use the same publicly available
dataset for our evaluation. However, because NCQ is a Node.js
REPL, it implements some REPL-specific rules and fixes
to make reusing code snippets in this environment easier.
Because of this, we rerun its correction on the dataset after
disabling these rules to better emulate the scenario described
in Section II (a developer looking to reuse code snippets in a
regular Node.js programming environment) and report errors
before and after fixes.

B. Stack Overflow Edits

In order to compare NCC’s performance to how developers
manually edit code, we evaluate on a set of Stack Overflow
snippets, for which we have the first and most recent edit. We
used the December 2020 version of the SOTorrent dataset [28],
[29], retrieving the code-only PostBlockVersions for all
accepted answers of posts tagged ‘Node.js’, giving us a total of
299,389 snippet versions, or ‘edits’, across 182,205 snippets.
For our SOEdits dataset, we look only at snippets where there
are at least two versions, there was some change between the
first and last version, and the first version has at least one
error, creating a dataset of 21,431 snippet ‘before’ and ‘after’
edit pairs. These pairs represent an original erroneous snippet,
and the current, edited snippet on SO.

Table 1
SUMMARY OF SOEDITS DATASET.

All snippets 182,205
All versions 299,389
All SOEdit pairs 21,431
Improvement only 15,969
Fixed only 1,099

By running the TypeScript compiler, we observe that this set
of snippet pairs does not necessarily represent an improvement
over time; overall, the number of errors increased between
edit pairs, as did the number of lines of code. For 74.51%
of SO edit pairs (15,969 pairs), there was an improvement
in errors between edits, and for only 5.12% of edits (1,099
pairs), all errors were corrected. For this reason, we further
filter the dataset to the 15,969 snippets that show improvement
and create an additional subset for the 1,099 snippets that were
‘fixed’. Table I shows the breakdown of the data.

VI. EVALUATION

We run both NCQ and NCC'’s corrections on a dataset of
2,161,911 code snippets from NPM package documentation
(described in Section V-A) and record results at each stage. To



establish baseline data of what errors ESLint and TypeScript
can identify, we also run only the error reporting. Experiments
were run with the latest LTS version of Node.js as of April
2023 (18.16.0), version 4.9.4 of TypeScript and version 8.31.0
of ESLint. We make the assumption that developers looking
for code online expect it to be up-to-date and compatible
with the recommended version of Node.js. We configure the
error reporters in NCQ and NCC (ESLint and TypeScript)
comparatively to emulate the scenario described in Section II;
a code snippet pasted into an empty file, in an otherwise empty
Node.js project, with no packages installed. Additionally, our
error reporters are configured for CommonlJS, or ‘script’ mode,
where require statements are used to import packages and
top-level await is not allowed. Because NCQ’s corrections
were designed for its REPL context, REPL-specific rules and
fixes were disabled so as not to impact results. Although the
dataset may still contain non-Node.js code snippets despite
filtering, such as TypeScript and JSX, we limit the evaluation
to Node.js; where TS and ESLint have options to process
this code without errors, we do not enable them. We ask the
following research questions:

RQ1. What errors does TypeScript detect in NPM docu-
mentation?

RQ2. How does error detection differ between ESLint and
TypeScript?

RQ3. What is the impact of NCC on the set of NPM
snippets?

RQ4. How does NCC compare to NCQ’s code corrections?

Furthermore, to evaluate the NCC results against the way
developers manually fix errors, we compare the results with
the set of improvements in the SOEdits dataset, described in
Section V-B. We ask the following research question:

RQS5. How does NCC compare to manual fixes?

A. What errors does TypeScript detect in NPM documenta-
tion?

We ask this question to characterise the frequency and types
of errors in NPM package documentation and also to establish
a baseline to compare our corrections. We ran the TypeScript
compiler on all 2,161,911 code snippets and found that only
569,201 code snippets (26.3%) had no errors. TypeScript
identified a total of 14,707,149 errors in the set, an average
of 6.8 errors per snippet. Looking at only erroneous snippets,
the average number increases to 9.2.

TypeScript reports 404 different error types on our dataset.
Almost half of the 14.7 million errors TypeScript detects are
for the error type cannot find name, with 7.2 million
occurrences; this is visible in Figure 5. This error reports cases
where an identifier was referenced without a declaration. There
is a similar, but separately numbered, error that suggests an
alternative name, where a misspelling is suspected, accounting
for another 198,413 errors. The second most common error
type, character expected, accounts for 1.6 million er-
rors. With the exception of the JSX error which appeared

Cannot find name

Character expected
Unexpected kwd or identifier
Invalid character

Expression expected

15X

Left side comma op unused

Errors

Decl or stmt expected

Cannot find name (suggestion).

Identifier expected

T T T
25 50 75
Occurrences (million)

L T T T >t
00 02 04 06 08

Figure 5. Most common error types in NPM documentation, reported by TS.

in 154,737 code snippets (7.16%), common errors can be
characterised as missing or unexpected characters, keywords,
identifiers, statements, or expressions. Error messages typi-
cally provide the error-causing token or the expected token.
TypeScript is also able to detect when functions do not exist
on a type; the Property does not exist on type
error is the 12th most common with 83,483 occurrences.

var prompt = require (’'prompt’);

W —

prompt.start ();

prompt.get ([’ username’, ’‘email’], function (err, result
) |

console.log(’Command-line input received:’)

console.log (' username: ’ + result.username)

console.log(’ email: ’ + result.email)});

- 9o w

const {username, email} = await prompt.get ([’username’,
Temail’]);

Figure 6. Two code snippets from the package prompt.

Figure 6 shows a common situation in NPM package doc-
umentation. These two code snippets from the README for
the prompt package demonstrate two ways to get input from
a user on the command-line using a prompt; using a callback
or using await. However, the second code snippet would
generate a cannot find name error when evaluated by
the TypeScript compiler. The variable prompt is undeclared
in the second snippet, but not in the first.

Code snippets are often not intended to be working exam-
ples but rather to demonstrate functionality; they often omit
code that would be repeated between code snippets, such as the
require statement in Figure 6. However, developers and au-
tomated tools still use them this way. The number of cannot
find name errors in the dataset suggests that missing vari-
ables are common and that this practice is widespread.

Summary: The majority (73.7%) of code snippets in
NPM package documentation have some kind of error.
On average, the snippets have 6.8 errors. The most
common error was for undeclared variables.

B. How does error detection differ between ESLint and Type-
Script?

To compare the two error reporters, we ran ESLint on the
same snippets. We use a modified version of the configuration



from NCQ, with the REPL specific errors disabled. We disable
‘linting’ rules concerning formatting and only look at errors
that would affect code functionality.

ESlint reports a similar rate of erroneous snippets, with only
26.3% of snippets having no errors. However, we observe that
the average number of errors per snippet sits at 1.26 errors
(and 1.71 errors for the erroneous set). In fact, ESLint reports
only a fraction (18.5%) of the errors that TypeScript can on
the same set. This is because of the 2,722,241 errors reported,
27.8% are parsing errors.

no-undef
Parsing.unexpectedToken
Parsing.awaitNotinAsync
Parsing.unexpectedCharacter
Parsing.alreadyDeclared

Errors

Parsing.reservedKeyword
Parsing.returnNotinFunction
Parsing.invalidRegEx

Parsing.assignedToRvalue

Parsing.unterminatedRegEx

T T = T T T
00 02 04 06 08 25 50 75
Occurrences (million)

Figure 7. The 10 most common error types via ESLint.

ESLint reports 185 different error types, of which 175 of the
types (94.6%) are parsing errors. Figure 7 reflects this, where
all but the most common error reported by ESLint (no-undef
at 2m occurrences) are parsing errors, such as unexpected
tokens (575,440 occurrences) and use of await outside of
an async function (only allowed in ES modules), at 59,221
instances. The prevalence of parsing errors is an issue for two
reasons. First, ESLint reports only a single parsing error per
snippet indicating why parsing failed, thus these snippets do
not generate an AST, nor can ESLint run its rule detection or
fixes. This means for 47.46% of snippets with errors, we are
only able to detect a single, unfixable error. Secondly, ESLint
rule detection besides from ‘no-undef’ accounts for only 2,211
errors. TypeScript’s ‘unexpected token’ error, for example,
occurs for only 60,885 occurrences; instead, TypeScript has an
increase in other more specific error types that might provide
more useful information on the cause of the error. The types of
errors ESLint can report are limited due it’s intended purpose
as a linter; further lowing the error rate, the majority of rules
are not enabled by NCQ as they are not useful for identifying
erroneous code. In this context Thus, the error information
is incomplete, and ESLint may not necessarily be useful for
evaluating runnability or informing fixes.

Summary: ESLint reports considerably fewer errors
than the TypeScript compiler — an average of 1.3 vs. 6.8
per snippet. 47.46% of erroneous snippets have a single
error where parsing failed, resulting in an average of
1.71 errors per erroneous snippet compared to Type-
Script’s 9.2. In these cases, it also cannot generate an
AST to enable fixes. These results indicate that ESLint
is limited in what it can tell us about code.

C. What is the impact of NCC on the set of NPM snippets?

First, we look at the impact of only the TypeScript codefixes
on the set of snippets. After applying the codefixes, the number
of snippets without errors increased from 569,201 (26.3%)
to 648,814 (30.0%). The total number of errors was reduced
from 14,707,149 to 14,096,112 (a decrease of 4.2%). In total,
602,629 snippets (27.9%) had changes made to fix errors.

Cannot find name

Character expected
Unexpected kwd or identifier
Invalid character

Expression expected

5%

Left side comma op unused

Errors

Decl or stmt expected
Prop doesn't exist on type

Identifier expected

T T T
25 50 75
Occurrences (million)

k T T T =1
00 02 04 06 08

Figure 8. The 10 most common error types after TS codefixes. Light Grey
represents a decrease in errors from previous results in Figure 5, where light
green represents an increase.

Figure 8 illustrates the most common error types after
codefixes and shows significant changes. All 10 of the most
common errors in Figure 5 had fixes, however, not all fixes can
be applied to every error, and some fixes can introduce new
errors. The most common error is still Cannot find name,
but it has reduced from 7.2 million to 6.3 million occurrences.
The error type Cannot find name (suggestion) no
longer appears in the most common errors, reducing from
198,313 occurrences to just 25,979. As discussed in Sec-
tion VI-A, this error type directly relates to its suggested
fix, so the reduction is logical here. However, the error
type Property doesn’t exist on type increased by
142,016 occurrences. Expression expected also visibly
increased. The other errors have minor increases/decreases that
are not visible on this scale. The increase in error Property
doesn’t exist on type probably results from fixes for
undefined variables, where a variable is defined that does not
make sense on the basis of usage.

Next, we consider the impact of line deletion in combination
with TS codefixes. We find that the number of snippets
without errors increased from the original 569,201 (26.3%) to
1,622,272 (75.0%), an increase of 185.0%. The total number of
errors that could not be fixed also decreased from the original
14,707,149 to 925,277. The average number of errors per
snippet decreased to 0.43. In total, 1,343,992 snippets (62.2%
of the total) had changes made to reduce errors.

The line deletion stage accounts for a 150.0% improvement,
or additional 973,458 error-free snippets, from the TypeScript
codefix stage. However, it also comments out all lines for
483,169 code snippets (22.3% of the total set and 49.6% of
snippets it makes error-free). To measure the impact of the
line deletion algorithm, we counted the number of lines before
and after deletion. In total, 4,031,366 lines of code were com-



mented out, 22.1% of the total lines of code. Combined with
the lines added from TypeScript codefixes, there are 2,902,083
fewer lines after NCC’s corrections. However, deleted lines are
only commented out, so they can still be useful to developers
by providing additional context and guiding them with what
to do next.

Cannot find name
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Figure 9. The 10 most common error types after deletion and TS codefixes.
Shading represents improvement over Figure 8.

The types of errors that were reported changed considerably
between codefixes and deletion, as seen in Figure 9. The
original 7.2 million instances of cannot find name were
again reduced to 446,972 instances. New errors now populate
the top 10: cannot find name (it) where a testing
library using the function it () was not installed, Type
annotations for the use of TypeScript, and Top level
await. All common errors saw reductions from their pre-
vious values, except Return outside function, which
increased by 7,728 occurrences after line deletion.

1|+ var s = "YOUR VALUE HERE";
2| var words = s.split (" ");

Figure 10. Example of undeclared variable with no fix, and a proposed fix.

Based on these results, we implement a limited suite of
targeted fixes for the most common error that still persists:
cannot find name. We conjecture that the ability to
define variables will enable NCC to reduce the number of
line deletions, and thus empty snippets. Despite the error type
Cannot find name having TS codefixes in some cases,
seemingly ‘simple’ cases such as the example in Figure 10
cannot be fixed. On the basis of these cases, we introduce
custom fixes.

We run all fixes on the dataset and observe that the number
of snippets with no errors decreases slightly by 1,929 (a
decrease from 75.0% to 74.94%). However, this does not tell
the entire story: the total number of errors fell by 2.76% to
899,774, and the number of empty snippets fell considerably
from 22.35% of the dataset to 7.41%. Figure 11 shows how
some errors increase but that there is a considerable decrease
in Cannot find name. We see an increase in the error
property doesn’t exist on type, likely due to the
addition of placeholder definitions which default to strings
in many cases. Similarly, the increasing error expression

Prop doesn't exist on type
15X

Cannot find name
Character expected

Expr not constructable

Errors

Expression expected
Type annotations
Cannot find name (test).
Top level await

Return outside func

T =1 T T T
04 06 08 25 50 75
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Figure 11. The 10 most common error types after all fixes. Shading represents
prior results from Figure 9.

not constructable also handles a similar case, where
the previously undefined identifier should instead be a con-
structable object.

Summary: NCC improves the number of error-free
snippets by 184.67%, and most of the remaining er-
roneous snippets have some changes to reduce errors.
However, 7.41% of the snippets are entirely commented
out by the corrections. The results indicate that leverag-
ing TypeScript enables NCC’s custom fixes to decrease
errors, but that additional heuristic fixes could further
reduce the reliance on ‘last resort’ line deletion.

D. How does NCC compare to NCQ’s code corrections?

We ask this question to investigate whether the use of a
compiler like TypeScript instead of a linter can improve error-
informed code corrections. NCQ’s code correction approach
consists of three components: evaluating errors using ESLint,
fixing errors using ESLint’s built-in fixes, and the line deletion
algorithm which runs on parsing errors. We record errors
before and after all correction steps.

With all fixes, we find that NCQ’s corrections are able to
increase the number of snippets without errors from 569,419
to 982,832 (45.46% of total code snippets), an increase of
413,413 code snippets (72.6%). Furthermore, the total number
of reported errors (that could not be fixed) actually increases
by 34,502, as the correction of parsing errors enable more
ESLint rule violations to be detected. In line with this, the
average errors per erroneous snippet increased to 2.34. 113,621
of the 413,413 snippets made error-free (27.48%) had all
lines commented out, and the line deletion algorithm removed
3,461,047 lines (20.2% of all lines).

Figure 12 shows the most common errors after fixes. Errors
reduced for parsing errors as expected, with unexpected
tokens now at 123,695 occurrences. Now that so many
parsing errors have been corrected with the deletion algorithm,
other errors appear in the top 10. We see that no—undef saw
an increase to 2,626,174 occurrences, as NCQ employs no
fixes for this error, and other non-parsing errors are now visible
such as no—const-assign. We note from our results that
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Figure 12. The 10 most common error types via ESLint after NCQ’s
corrections. Shading represents the initial values before fixes (see Figure 7).

ESLint’s built-in fixes have very little impact on the dataset:
after the ESLint fix stage, errors only reduced by 2 and a
single snippet was made error-free. ESLint’s fixes mostly solve
formatting issues and only work on parsable snippets, so this
is expected. We compare these results with NCC’s use of
TypeScript codefixes, which corrected all errors in 79,613
snippets and resulted in a 611,037 error reduction.

It is difficult to compare the impact of each approach on the
quality of code snippets; we do not attempt to run snippets
after fixes to see if there is an improvement in runnability,
and neither evaluator can give us a ‘correct’ number of errors.
We also cannot compare the exact number of errors between
approaches, as each evaluator reports errors differently. How-
ever, we can see that NCQ results in more empty snippets as
part of its corrections, and that it does not correct as many
snippets. Because most erroneous snippets with ESLint have
a single parsing error, this means that if a line deletion does
not improve the code snippet, there are no alternatives to
try. Empty snippets and number of deleted lines also reduced
between approaches: 14.29% of corrected snippets were empty
for NCC (7.41% of the dataset), compared to NCQ’s 27.48%
(14.33%). This suggests that the use of TypeScript enables
more accurate line deletion and that additional fixes reduce
the reliance on deletion.

Summary: Compared to NCQ’s code corrections, we
find that NCC has a higher improvement rate and that
NCC leaves fewer snippets empty (7.41% vs 14.33%).
We find that ESLint’s automated fixes implemented in
NCQ had little effect on improving code snippets, only
fixing 1 snippet.

E. How does NCC compare to manual fixes?

To compare NCC to manual fixes, we evaluate against Stack
Overflow snippet pairs, for which we have an original snippet
containing at least one error (the ‘pre-edit’ snippet), and the
most recent with reduced errors (the ‘post-edit’ snippet). We
look at both the total ‘improvement’ set, and the 1,099 subset
where all errors were fixed. Though we do not expect our
limited suite of fixes to correct all 1,099 snippets, the aim of
the comparison is to see how well NCC performs despite this.

First, we observe the error landscape of the pre-edit ‘im-
provement’ set. The TypeScript compiler reports a total of
160,602 errors in the dataset: an average of 10.06 errors per
snippet. This set of snippets only contains erroneous snippets,
so all snippets have at least one error. Figure 13 shows the most
common error types before editing, with the most common
error remaining ‘cannot find name’ like in the previous results.
Again, Stack Overflow snippets often miss elements that might
exist in other snippets or in the question.

Cannot find name 82841

Errors

Character expected
Unexpected kwd or identifier 4
Expression expected

15X 1

Decl or stmt expected

Cannot find name (suggestion).
Left side comma op unused
Invalid character

Identifier expected -

20647
18959
5203
3837
3549
3233
3169
2092

1766

T T T =1 T T
00 025 05 075 10 5.0 10.0
Qccurrences (10K)

Figure 13. The 10 most common errors for Stack Overflow Edits pre-edit.

Next, we observe the reduction in errors after manual fixes,
represented in the ‘post-edit’ set. We see a 17.60% reduction in
total errors and 6.88% of the snippets have all errors corrected.
Figure 14 shows the change in error types, which can be
summarised as a general reduction in all common error types.

Cannot find name

Character expected
Unexpected kwd or identifier
Expression expected

5%

Decl or stmt expected

Errors

Left side comma op unused
Cannot find name (suggestion).
Invalid character

Identifier expected

b T T T el T
0.0 025 05 075 L0 5.0 10.0

Occurrences (10K)

Figure 14. The 10 most common error types for Stack Overflow Edits post-
edit. Grey represents the change between edits.

When we run NCC over the original snippets, we ob-
serve that our suite of fixes enables a 90.69% decrease in
errors. 7,469 snippets are made error-free: an additional 6,370
snippets over the post-manual-edit set, representing 46.77%
of the dataset. This result is achieved with a 5.71% rate
of empty (‘commented out’) snippets, compared to only 3
(0.27%) for manual edits. Figure 15 shows how the er-
ror landscape changes: The occurrences of cannot find
name, previously the most common error, reduce to only
1,281 occurrences. Again, we see similar errors increase as
in Section VI-C. However, we check for an increase in errors
after making changes to ensure that the change does not make
the code worse, and the value is intended to be modified by
developers with their own value.
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Figure 15. The most common errors for Stack Overflow snippets after NCC.

For the subset of 1,099 snippets that were manually fixed
in their post-edit version, NCC is able to fix 726, 66.06% of
the set. 47 (4.28%) of the snippets are entirely commented out
by NCC'’s fixes.

Summary: NCC can resolve all errors for 46.77% of
SO snippets, reducing errors by 90.69% with a rate
of 5.71% empty snippets. Evaluated against snippets
with manual corrections, NCC can fix 66.06% of these
snippets, which is a promising result.

VII. THREATS AND LIMITATIONS

There are several potential threats to the validity of this
study. Firstly, our results on quality and correctness of the code
snippets are based on reported errors from both TypeScript
and ESLint, but neither of these tools can accurately represent
the runnability of the code. Furthermore, we did not try to
install each package within our dataset, but because TypeScript
can gather type information and use it to report errors, this
could have provided additional error information. We assume
that the inability to parse or compile a snippet relates to its
quality and runnability, which is true for compilable languages
like Java but may not necessarily hold for Node.js. Similarly,
because we do not run code snippets, either before or after
fixes, we cannot know the impact of fixes on runnability. Our
fixes for Stack Overflow snippets may report fewer errors, but
our automatic fixes may not be similar to the kinds of fixes that
developers produce manually. Additionally, removing lines
may reduce errors at the cost of expected behaviour. Because
we focus on lines, and not statements, errors over multiple
lines may not easily be addressed by our algorithm.

Snippets were mined devoid of context, in order to replicate
developer copy-paste and code recommender systems like
NCQ, but this method may account for some of the missing
variable errors. Additionally, while care was taken to limit
the mined datasets to only Node.js code, as described in
Section V, non-code still exists in the dataset and may impact
results. Finally, the results of our evaluation are specific to
Node.js and the version used, and we cannot claim that they
generalise to other languages, or even versions of Node.js.
Additionally, there are limitations to our approach. NCC

simply re-implements ts—fix’s batch approach to applying
TypeScript’s fixes, which does not validate each fix individu-
ally. Like the line deletion algorithm and heuristic fixes, each
change could be checked via the compiler to ensure that no fix
makes a snippet worse. Furthermore, heuristic fixes can always
be further refined to handle more situations. We acknowledge
the limitations of such fixes, in that they must be individually
designed for each error case and make guesses about missing
parts of code. We look with interest at Large Language Models
(LLMs) like OpenAl’s Codex and ChatGPT that might provide
new Al solutions for this problem. GitHub’s Copilot plug-in
already generates snippets in the editor for a given task and
code context and could change code reuse practices. However,
there are concerns about the quality of generated code. Future
work may investigate how a similar system can be applied to
existing code snippets.

VIII. CONCLUSION AND FUTURE WORK

Developers often rely on code snippets found online for
reference and assistance in their projects. However, most of
these snippets are not runnable, requiring developers to spend
additional time fixing errors, which can be especially challeng-
ing when using third-party libraries. Existing approaches to
automatically identify and fix errors in snippets have primarily
focused on static analysis using parsers and linters, as snippets
often lack test cases or do not run. Although these techniques
have proven useful in some cases, there is still a need for
a better way to evaluate and correct errors in Node.js code.
Our work aims to address this gap by using the TypeScript
compiler for more effective and accurate code correction
compared to a linter like ESLint, which on average reports
only one error per snippet.

Our results indicate that the TypeScript compiler enables
more effective and accurate code identification and correction
when compared to ESLint. The TypeScript compiler is also
capable of detecting more errors and more informative errors,
and its built-in fixes affect more snippets. Additionally, the
reported error information and ASTs generated by the Type-
Script compiler enable the use of additional heuristic fixes on
more snippets. Based on these results, we suggest the use of
the TypeScript compiler for static analysis on Node.js datasets
over linters, and the NCC approach for automating code reuse.

Future work could integrate NCC within a code recom-
mendation system or as a IDE plug-in, to find, insert and
then correct code snippets from online, similar to NCQ.
Additionally, we could study how useful developers find the
fixes generated by NCC, either by asking them questions
about the changes or having them use the tool in a code
reuse scenario. It may also be interesting to investigate how
accurately TypeScript errors correlate with runnability, when
trying to run code snippets, and how well NCC makes the
snippets runnable.
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